+%%%*********************************************************
+%%%*********************************************************
+\section{Introduction}
+% no \IEEEPARstart
+% You must have at least 2 lines in the paragraph with the drop letter
+% (should never be an issue)
+Iterative methods are become more attractive than direct ones to solve large sparse linear systems. They are more effective in a parallel context and require less memory and arithmetic operations than direct methods.
+
+%les chercheurs ont développer différentes méthodes exemple de méthode iteratives stationnaires et non stationnaires (krylov)
+%problème de convergence et difficulté dans le passage à l'échelle
+
+%%%*********************************************************
+%%%*********************************************************
+
+
+
+%%%*********************************************************
+%%%*********************************************************
+\section{Related works}
+%Wherever Times is specified, Times Roman or Times New Roman may be used. If neither is available on your system, please use the font closest in appearance to Times. Avoid using bit-mapped fonts if possible. True-Type 1 or Open Type fonts are preferred. Please embed symbol fonts, as well, for math, etc.
+%%%*********************************************************
+%%%*********************************************************
+
+
+
+%%%*********************************************************
+%%%*********************************************************
+\section{A Krylov two-stage algorithm}
+We propose a two-stage algorithm to solve large sparse linear systems of the form $Ax=b$, where $A\in\mathbb{R}^{n\times n}$ is a sparse and square nonsingular matrix, $x\in\mathbb{R}^n$ is the solution vector and $b\in\mathbb{R}^n$ is the right-hand side. The algorithm is implemented as an inner-outer iteration solver based on iterative Krylov methods. The main key points of our solver are given in Algorithm~\ref{algo:01}.
+
+In order to accelerate the convergence, the outer iteration is implemented as an iterative Krylov method which minimizes some error function over a Krylov sub-space~\cite{saad96}. At every iteration, the sparse linear system $Ax=b$ is solved iteratively with an iterative method as GMRES method~\cite{saad86} and the Krylov sub-space that we used is spanned by a basis $S$ composed of successive solutions issued from the inner iteration
+\begin{equation}
+ S = \{x^1, x^2, \ldots, x^s\} \text{,~} s\leq n.
+\end{equation}
+The advantage of such a Krylov sub-space is that we neither need an orthogonal basis nor any synchronization between processors to generate this basis. The algorithm is periodically restarted every $s$ iterations with a new initial guess $x=S\alpha$ which minimizes the residual norm $\|b-Ax\|_2$ over the Krylov sub-space spanned by vectors of $S$, where $\alpha$ is a solution of the normal equations
+\begin{equation}
+ R^TR\alpha = R^Tb,
+\end{equation}
+which is associated with the least-squares problem
+\begin{equation}
+ \underset{\alpha\in\mathbb{R}^{s}}{min}\|b-R\alpha\|_2
+\label{eq:01}
+\end{equation}
+such that $R=AS$ is a dense rectangular matrix in $\mathbb{R}^{n\times s}$, $s\ll n$, and $R^T$ denotes the transpose of matrix $R$. We use an iterative method to solve the least-squares problem~(\ref{eq:01}) as CGLS~\cite{hestenes52} or LSQR~\cite{paige82} methods which is more appropriate than a direct method in the parallel context.
+
+\begin{algorithm}[t]
+\caption{A Krylov two-stage algorithm}
+\begin{algorithmic}[1]
+ \Input $A$ (sparse matrix), $b$ (right-hand side)
+ \Output $x$ (solution vector)\vspace{0.2cm}
+ \State Set the initial guess $x^0$
+ \For {$k=1,2,3,\ldots$ until convergence}
+ \State Solve iteratively $Ax^k=b$
+ \State Add vector $x^k$ to Krylov sub-space basis $S$
+ \If {$k$ mod $s=0$ {\bf and} not convergence}
+ \State Compute dense matrix $R=AS$
+ \State Solve least-squares problem $\underset{\alpha\in\mathbb{R}^{s}}{min}\|b-R\alpha\|_2$
+ \State Compute minimizer $x^k=S\alpha$
+ \State Reinitialize Krylov sub-space basis $S$
+ \EndIf
+ \EndFor
+\end{algorithmic}
+\label{algo:01}
+\end{algorithm}
+%%%*********************************************************
+%%%*********************************************************
+
+
+
+%%%*********************************************************
+%%%*********************************************************
+\section{Experiments using petsc}
+%%%*********************************************************
+%%%*********************************************************
+
+
+
+%%%*********************************************************
+%%%*********************************************************