+Table~\ref{tab:03} shows the execution times and the number of iterations of
+example ex15 of PETSc on the Juqueen architecture. Different numbers of cores
+are studied ranging from 2,048 up-to 16,383. Two preconditioners have been
+tested: {\it mg} and {\it sor}. For those experiments, the number of components (or unknowns of the
+problems) per core is fixed to 25,000, also called weak scaling. This
+number can seem relatively small. In fact, for some applications that need a lot
+of memory, the number of components per processor requires sometimes to be
+small.
+
+
+
+In Table~\ref{tab:03}, we can notice that TSIRM is always faster than FGMRES. The last
+column shows the ratio between FGMRES and the best version of TSIRM according to
+the minimization procedure: CGLS or LSQR. Even if we have computed the worst
+case between CGLS and LSQR, it is clear that TSIRM is always faster than
+FGMRES. For this example, the multigrid preconditioner is faster than SOR. The
+gain between TSIRM and FGMRES is more or less similar for the two
+preconditioners. Looking at the number of iterations to reach the convergence,
+it is obvious that TSIRM allows the reduction of the number of iterations. It
+should be noticed that for TSIRM, in those experiments, only the iterations of
+the Krylov solver are taken into account. Iterations of CGLS or LSQR were not
+recorded but they are time-consuming. In general each $max\_iter_{kryl}*s$ which
+corresponds to 30*12, there are $max\_iter_{ls}$ which corresponds to 15.
+
+\begin{figure}[htbp]
+\centering
+ \includegraphics[width=0.45\textwidth]{nb_iter_sec_ex15_juqueen}
+\caption{Number of iterations per second with ex15 and the same parameters than in Table~\ref{tab:03} (weak scaling)}
+\label{fig:01}
+\end{figure}
+
+
+In Figure~\ref{fig:01}, the number of iterations per second corresponding to
+Table~\ref{tab:03} is displayed. It can be noticed that the number of
+iterations per second of FMGRES is constant whereas it decreases with TSIRM with
+both preconditioners. This can be explained by the fact that when the number of
+cores increases the time for the least-squares minimization step also increases but, generally,
+when the number of cores increases, the number of iterations to reach the
+threshold also increases, and, in that case, TSIRM is more efficient to reduce
+the number of iterations. So, the overall benefit of using TSIRM is interesting.
+
+
+
+
+
+
+\begin{table*}[htbp]
+\begin{center}
+\begin{tabular}{|r|r|r|r|r|r|r|r|r|}
+\hline
+
+ nb. cores & threshold & \multicolumn{2}{c|}{FGMRES} & \multicolumn{2}{c|}{TSIRM CGLS} & \multicolumn{2}{c|}{TSIRM LSQR} & best gain \\
+\cline{3-8}
+ & & Time & \# Iter. & Time & \# Iter. & Time & \# Iter. & \\\hline \hline
+ 2,048 & 8e-5 & 108.88 & 16,560 & 23.06 & 3,630 & 22.79 & 3,630 & 4.77 \\
+ 2,048 & 6e-5 & 194.01 & 30,270 & 35.50 & 5,430 & 27.74 & 4,350 & 6.99 \\
+ 4,096 & 7e-5 & 160.59 & 22,530 & 35.15 & 5,130 & 29.21 & 4,350 & 5.49 \\
+ 4,096 & 6e-5 & 249.27 & 35,520 & 52.13 & 7,950 & 39.24 & 5,790 & 6.35 \\
+ 8,192 & 6e-5 & 149.54 & 17,280 & 28.68 & 3,810 & 29.05 & 3,990 & 5.21 \\
+ 8,192 & 5e-5 & 785.04 & 109,590 & 76.07 & 10,470 & 69.42 & 9,030 & 11.30 \\
+ 16,384 & 4e-5 & 718.61 & 86,400 & 98.98 & 10,830 & 131.86 & 14,790 & 7.26 \\
+\hline
+
+\end{tabular}
+\caption{Comparison of FGMRES and TSIRM with FGMRES algorithms for ex54 of Petsc (both with the MG preconditioner) with 25,000 components per core on Curie (restart=30, s=12), time is expressed in seconds.}
+\label{tab:04}
+\end{center}
+\end{table*}
+
+
+In Table~\ref{tab:04}, some experiments with example ex54 on the Curie architecture are reported.
+