-%We can remark that, at each iterate, the residue of the TSIRM algorithm is lower
-%than the one of the GMRES method.
+Remark that a similar proposition can be formulated at each time
+the given solver satisfies an inequality of the form $||r_n|| \leqslant \mu^n ||r_0||$,
+with $|\mu|<1$. Furthermore, it is \emph{a priori} possible in some particular cases
+regarding $A$,
+that the proposed TSIRM converges while the GMRES($m$) does not.