-\author{\IEEEauthorblockN{Rapha\"el Couturier\IEEEauthorrefmark{1}, Lilia Ziane Khodja \IEEEauthorrefmark{2}, and Christophe Guyeux\IEEEauthorrefmark{1}}
+\author{\IEEEauthorblockN{Rapha\"el Couturier\IEEEauthorrefmark{1}, Lilia Ziane Khodja\IEEEauthorrefmark{2}, and Christophe Guyeux\IEEEauthorrefmark{1}}
\IEEEauthorblockA{\IEEEauthorrefmark{1} Femto-ST Institute, University of Franche Comte, France\\
Email: \{raphael.couturier,christophe.guyeux\}@univ-fcomte.fr}
\IEEEauthorblockA{\IEEEauthorrefmark{2} INRIA Bordeaux Sud-Ouest, France\\
\IEEEauthorblockA{\IEEEauthorrefmark{1} Femto-ST Institute, University of Franche Comte, France\\
Email: \{raphael.couturier,christophe.guyeux\}@univ-fcomte.fr}
\IEEEauthorblockA{\IEEEauthorrefmark{2} INRIA Bordeaux Sud-Ouest, France\\
equals to the restart number of the GMRES-like method. Moreover, a tolerance
threshold must be specified for the solver. In practice, this threshold must be
much smaller than the convergence threshold of the TSIRM algorithm (\emph{i.e.}
equals to the restart number of the GMRES-like method. Moreover, a tolerance
threshold must be specified for the solver. In practice, this threshold must be
much smaller than the convergence threshold of the TSIRM algorithm (\emph{i.e.}
-$\epsilon_{tsirm}$). Line~\ref{algo:store}, $S_{k~ mod~ s}=x^k$ consists in copying the
-solution $x_k$ into the column $k~ mod~ s$ of the matrix $S$. After the
+$\epsilon_{tsirm}$). Line~\ref{algo:store}, $S_{k \mod s}=x^k$ consists in copying the
+solution $x_k$ into the column $k \mod s$ of the matrix $S$, where $S$ is a matrix of size $n\times s$ whose column vector $i$ is denoted by $S_i$. After the
minimization, the matrix $S$ is reused with the new values of the residuals. To
solve the minimization problem, an iterative method is used. Two parameters are
required for that: the maximum number of iterations and the threshold to stop the
minimization, the matrix $S$ is reused with the new values of the residuals. To
solve the minimization problem, an iterative method is used. Two parameters are
required for that: the maximum number of iterations and the threshold to stop the
parts. More precisely, except the least-squares step, all the other parts are
obvious to achieve out in parallel. In order to develop a parallel version of
our code, we have chosen to use PETSc~\cite{petsc-web-page}. For
line~\ref{algo:matrix_mul} the matrix-matrix multiplication is implemented and
efficient since the matrix $A$ is sparse and since the matrix $S$ contains few
parts. More precisely, except the least-squares step, all the other parts are
obvious to achieve out in parallel. In order to develop a parallel version of
our code, we have chosen to use PETSc~\cite{petsc-web-page}. For
line~\ref{algo:matrix_mul} the matrix-matrix multiplication is implemented and
efficient since the matrix $A$ is sparse and since the matrix $S$ contains few
interesting to solve the least-squares minimization, CGLS and LSQR.
In the following we remind the CGLS algorithm. The LSQR method follows more or
interesting to solve the least-squares minimization, CGLS and LSQR.
In the following we remind the CGLS algorithm. The LSQR method follows more or
Suppose that $A$ is a positive real matrix with symmetric part $M$. Then the residual norm provided at the $m$-th step of GMRES satisfies:
\begin{equation}
||r_m|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{m}{2}} ||r_0|| ,
Suppose that $A$ is a positive real matrix with symmetric part $M$. Then the residual norm provided at the $m$-th step of GMRES satisfies:
\begin{equation}
||r_m|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{m}{2}} ||r_0|| ,
-If $A$ is a positive real matrix and GMRES($m$) is used as solver, then the TSIRM algorithm is convergent.
+If $A$ is a positive real matrix and GMRES($m$) is used as solver, then the TSIRM algorithm is convergent. Furthermore, we still have
+\begin{equation}
+||r_m|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{m}{2}} ||r_0|| ,
+\end{equation}
+where $\alpha$ and $\beta$ are defined as in Proposition~\ref{prop:saad}.
We will prove that $r_k \rightarrow 0$ when $k \rightarrow +\infty$.
Each step of the TSIRM algorithm \\
We will prove that $r_k \rightarrow 0$ when $k \rightarrow +\infty$.
Each step of the TSIRM algorithm \\
-& = \min_{x \in Vect\left(x_0, x_1, \hdots, x_{k-1} \right)} ||b-AS\alpha ||_2\\
-& \leqslant \min_{x \in Vect\left( S_{k-1} \right)} ||b-Ax ||_2\\
-& \leqslant ||b-Ax_{k-1}||
+& = \min_{x \in span\left(S_{k-s}, S_{k-s+1}, \hdots, S_{k-1} \right)} ||b-AS\alpha ||_2\\
+& = \min_{x \in span\left(x_{k-s}, x_{k-s}+1, \hdots, x_{k-1} \right)} ||b-AS\alpha ||_2\\
+& \leqslant \min_{x \in span\left( x_{k-1} \right)} ||b-Ax ||_2\\
+& \leqslant \min_{\lambda \in \mathbb{R}} ||b-\lambda Ax_{k-1} ||_2\\
+& \leqslant ||b-Ax_{k-1}||_2 .
%%%*********************************************************
%%%*********************************************************
%%%*********************************************************
%%%*********************************************************
example ex15 of PETSc on the Juqueen architecture. Different numbers of cores
are studied ranging from 2,048 up-to 16,383. Two preconditioners have been
tested: {\it mg} and {\it sor}. For those experiments, the number of components (or unknowns of the
example ex15 of PETSc on the Juqueen architecture. Different numbers of cores
are studied ranging from 2,048 up-to 16,383. Two preconditioners have been
tested: {\it mg} and {\it sor}. For those experiments, the number of components (or unknowns of the
number can seem relatively small. In fact, for some applications that need a lot
of memory, the number of components per processor requires sometimes to be
small.
number can seem relatively small. In fact, for some applications that need a lot
of memory, the number of components per processor requires sometimes to be
small.
\cline{3-8}
& & Time & \# Iter. & Time & \# Iter. & Time & \# Iter. & \\\hline \hline
2,048 & 8e-5 & 108.88 & 16,560 & 23.06 & 3,630 & 22.79 & 3,630 & 4.77 \\
\cline{3-8}
& & Time & \# Iter. & Time & \# Iter. & Time & \# Iter. & \\\hline \hline
2,048 & 8e-5 & 108.88 & 16,560 & 23.06 & 3,630 & 22.79 & 3,630 & 4.77 \\
-\caption{Comparison of FGMRES and 2 stage FGMRES algorithms for ex54 of Petsc (both with the MG preconditioner) with 25000 components per core on Curie (restart=30, s=12), time is expressed in seconds.}
+\caption{Comparison of FGMRES and TSIRM with FGMRES algorithms for ex54 of Petsc (both with the MG preconditioner) with 25,000 components per core on Curie (restart=30, s=12), time is expressed in seconds.}
512 & 3,969.69 & 33,120 & 709.57 & 5,790 & 622.76 & 5,070 & 6.37 & 1 & 1 & 1 \\
1024 & 1,530.06 & 25,860 & 290.95 & 4,830 & 307.71 & 5,070 & 5.25 & 1.30 & 1.21 & 1.01 \\
2048 & 919.62 & 31,470 & 237.52 & 8,040 & 194.22 & 6,510 & 4.73 & 1.08 & .75 & .80\\
512 & 3,969.69 & 33,120 & 709.57 & 5,790 & 622.76 & 5,070 & 6.37 & 1 & 1 & 1 \\
1024 & 1,530.06 & 25,860 & 290.95 & 4,830 & 307.71 & 5,070 & 5.25 & 1.30 & 1.21 & 1.01 \\
2048 & 919.62 & 31,470 & 237.52 & 8,040 & 194.22 & 6,510 & 4.73 & 1.08 & .75 & .80\\
-\caption{Comparison of FGMRES and 2 stage FGMRES algorithms for ex54 of Petsc (both with the MG preconditioner) with 204,919,225 components on Curie with different number of cores (restart=30, s=12, threshol 5e-5), time is expressed in seconds.}
+\caption{Comparison of FGMRES and TSIRM with FGMRES for ex54 of Petsc (both with the MG preconditioner) with 204,919,225 components on Curie with different number of cores (restart=30, s=12, threshold 5e-5), time is expressed in seconds.}
- adaptative number of outer iterations to minimize\\
- other methods to minimize the residuals?\\
- implement our solver inside PETSc
- adaptative number of outer iterations to minimize\\
- other methods to minimize the residuals?\\
- implement our solver inside PETSc
%%%*********************************************************
\section*{Acknowledgment}
This paper is partially funded by the Labex ACTION program (contract
%%%*********************************************************
\section*{Acknowledgment}
This paper is partially funded by the Labex ACTION program (contract