]> AND Private Git Repository - GMRES2stage.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Typos
[GMRES2stage.git] / paper.tex
index b08750d9341141e92504651cb38ae9b3fcab7c99..64a88a8a1d339bc6ab79a382281a7c8d415edb3b 100644 (file)
--- a/paper.tex
+++ b/paper.tex
 \algnewcommand\Output{\item[\algorithmicoutput]}
 
 \newtheorem{proposition}{Proposition}
-\newtheorem{proof}{Proof}
 
 \begin{document}
 %
 % use a multiple column layout for up to two different
 % affiliations
 
-\author{\IEEEauthorblockN{Rapha\"el Couturier\IEEEauthorrefmark{1}, Lilia Ziane Khodja\IEEEauthorrefmark{2}, and Christophe Guyeux\IEEEauthorrefmark{1}}
+\author{\IEEEauthorblockN{Rapha\"el Couturier\IEEEauthorrefmark{1}, Lilia Ziane Khodja \IEEEauthorrefmark{2}, and Christophe Guyeux\IEEEauthorrefmark{1}}
 \IEEEauthorblockA{\IEEEauthorrefmark{1} Femto-ST Institute, University of Franche Comte, France\\
 Email: \{raphael.couturier,christophe.guyeux\}@univ-fcomte.fr}
 \IEEEauthorblockA{\IEEEauthorrefmark{2} INRIA Bordeaux Sud-Ouest, France\\
@@ -670,8 +669,8 @@ called for a  maximum of $max\_iter_{kryl}$ iterations.  In practice, we  sugges
 equals to  the restart  number of the  GMRES-like method. Moreover,  a tolerance
 threshold must be specified for the  solver. In practice, this threshold must be
 much  smaller  than the  convergence  threshold  of  the TSIRM  algorithm  (\emph{i.e.}
-$\epsilon_{tsirm}$).  Line~\ref{algo:store}, $S_{k~ mod~ s}=x^k$ consists in copying the
-solution  $x_k$  into the  column  $k~ mod~ s$ of  the  matrix  $S$. After  the
+$\epsilon_{tsirm}$).  Line~\ref{algo:store}, $S_{k \mod s}=x^k$ consists in copying the
+solution  $x_k$  into the  column  $k \mod s$ of  the  matrix  $S$, where $S$ is a matrix of size $n\times s$ whose column vector $i$ is denoted by $S_i$. After  the
 minimization, the matrix $S$ is reused with the new values of the residuals.  To
 solve the minimization problem, an  iterative method is used. Two parameters are
 required for that: the maximum number of iterations and the threshold to stop the
@@ -687,13 +686,13 @@ Let us summarize the most important parameters of TSIRM:
 \end{itemize}
 
 
-The  parallelisation  of  TSIRM  relies   on  the  parallelization  of  all  its
+The  parallelization  of  TSIRM  relies   on  the  parallelization  of  all  its
 parts. More  precisely, except  the least-squares step,  all the other  parts are
 obvious to  achieve out in parallel. In  order to develop a  parallel version of
 our   code,   we   have   chosen  to   use   PETSc~\cite{petsc-web-page}.    For
 line~\ref{algo:matrix_mul} the  matrix-matrix multiplication is  implemented and
 efficient since the  matrix $A$ is sparse and since the  matrix $S$ contains few
-colums in  practice. As explained  previously, at least  two methods seem  to be
+columns in  practice. As explained  previously, at least  two methods seem  to be
 interesting to solve the least-squares minimization, CGLS and LSQR.
 
 In the following  we remind the CGLS algorithm. The LSQR  method follows more or
@@ -742,10 +741,11 @@ Suppose that $A$ is a positive real matrix with symmetric part $M$. Then the res
 \begin{equation}
 ||r_m|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{m}{2}} ||r_0|| ,
 \end{equation}
-where $\alpha = \lambda_{min}(M)^2$ and $\beta = \lambda_{max}(A^T A)$, which proves 
+where $\alpha = \lambda_min(M)^2$ and $\beta = \lambda_max(A^T A)$, which proves 
 the convergence of GMRES($m$) for all $m$ under that assumption regarding $A$.
 \end{proposition}
 
+
 We can now claim that,
 \begin{proposition}
 If $A$ is a positive real matrix and GMRES($m$) is used as solver, then the TSIRM algorithm is convergent.
@@ -756,9 +756,17 @@ Let $r_k = b-Ax_k$, where $x_k$ is the approximation of the solution after the
 $k$-th iterate of TSIRM.
 We will prove that $r_k \rightarrow 0$ when $k \rightarrow +\infty$.
 
-Each step of the TSIRM algorithm 
+Each step of the TSIRM algorithm \\
+$\min_{\alpha \in \mathbb{R}^s} ||b-R\alpha ||_2 = \min_{\alpha \in \mathbb{R}^s} ||b-AS\alpha ||_2$
+
+$\begin{array}{ll}
+& = \min_{x \in Vect\left(x_0, x_1, \hdots, x_{k-1} \right)} ||b-AS\alpha ||_2\\
+& \leqslant \min_{x \in Vect\left( S_{k-1} \right)} ||b-Ax ||_2\\
+& \leqslant ||b-Ax_{k-1}||
+\end{array}$
 \end{proof}
 
+
 %%%*********************************************************
 %%%*********************************************************
 \section{Experiments using PETSc}
@@ -917,10 +925,10 @@ corresponds to 30*12, there are $max\_iter_{ls}$ which corresponds to 15.
 
 
 In  Figure~\ref{fig:01}, the number  of iterations  per second  corresponding to
-Table~\ref{tab:01}  is  displayed.   It  can  be  noticed  that  the  number  of
-iterations per second of FMGRES is  constant whereas it decrease with TSIRM with
-both preconditioner. This  can be explained by the fact that  when the number of
-core increases the time for the minimization step also increases but, generally,
+Table~\ref{tab:03}  is  displayed.   It  can  be  noticed  that  the  number  of
+iterations per second of FMGRES is  constant whereas it decreases with TSIRM with
+both preconditioners. This  can be explained by the fact that  when the number of
+cores increases the time for the least-squares minimization step also increases but, generally,
 when  the number  of cores  increases,  the number  of iterations  to reach  the
 threshold also increases,  and, in that case, TSIRM is  more efficient to reduce
 the number of iterations. So, the overall benefit of using TSIRM is interesting.
@@ -1060,3 +1068,4 @@ Curie and Juqueen respectively based in France and Germany.
 
 % that's all folks
 \end{document}
+