principle of our approach is to build an external iteration over the Krylov
method and to save the current residual frequently (for example, for each
restart of GMRES). Then after a given number of outer iterations, a minimization
-step is applied on the matrix composed of the save residuals in order to compute
-a better solution and make a new iteration if necessary. We prove that our
-method has the same convergence property than the inner method used. Some
+step is applied on the matrix composed of the saved residuals in order to
+compute a better solution and make a new iteration if necessary. We prove that
+our method has the same convergence property than the inner method used. Some
experiments using up to 16,394 cores show that compared to GMRES our algorithm
can be around 7 times faster.
\end{abstract}