]> AND Private Git Repository - GMRES2stage.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
fig
[GMRES2stage.git] / paper.tex
index deff6f33cbf2c9afed920cdf992094cfc9a4e149..f64255d6571c69d1107676c8dad1206ec7098332 100644 (file)
--- a/paper.tex
+++ b/paper.tex
 \usepackage{amsmath}
 \usepackage{amssymb}
 \usepackage{multirow}
+\usepackage{graphicx}
 
 \algnewcommand\algorithmicinput{\textbf{Input:}}
 \algnewcommand\Input{\item[\algorithmicinput]}
@@ -583,8 +584,7 @@ performances.
 The present paper is organized  as follows. In Section~\ref{sec:02} some related
 works are presented. Section~\ref{sec:03} presents our two-stage algorithm using
 a  least-square  residual  minimization.   Section~\ref{sec:04}  describes  some
-convergence  results  on this  method.   In Section~\ref{sec:05},  parallization
-details  of  TSARM  are  given.  Section~\ref{sec:06}  shows  some  experimental
+convergence  results  on this  method.   Section~\ref{sec:05}  shows  some  experimental
 results  obtained on large  clusters of  our algorithm  using routines  of PETSc
 toolkit.  Finally Section~\ref{sec:06} concludes and gives some perspectives.
 %%%*********************************************************
@@ -680,18 +680,6 @@ To summarize, the important parameters of TSARM are:
 \item $\epsilon_{ls}$ the threshold to stop the least-square method
 \end{itemize}
 
-%%%*********************************************************
-%%%*********************************************************
-
-\section{Convergence results}
-\label{sec:04}
-
-
-
-%%%*********************************************************
-%%%*********************************************************
-\section{Parallelization}
-\label{sec:05}
 
 The  parallelisation  of  TSARM  relies   on  the  parallelization  of  all  its
 parts. More  precisely, except  the least-square step,  all the other  parts are
@@ -733,10 +721,21 @@ In each iteration  of CGLS, there is two  matrix-vector multiplications and some
 classical operations:  dots, norm, multiplication  and addition on  vectors. All
 these operations are easy to implement in PETSc or similar environment.
 
+
+
+%%%*********************************************************
+%%%*********************************************************
+
+\section{Convergence results}
+\label{sec:04}
+
+
+
+
 %%%*********************************************************
 %%%*********************************************************
 \section{Experiments using petsc}
-\label{sec:06}
+\label{sec:05}
 
 
 In order to see the influence of our algorithm with only one processor, we first
@@ -814,9 +813,22 @@ torso3             & fgmres / sor  & 37.70 & 565 & 34.97 & 510 \\
 
 
 
-Larger experiments ....\\
 
-Describe the problems ex15 and ex54
+In the following we describe the applications of PETSc we have experimented. Those applications are available in the ksp part which is suited for  scalable linear equations solvers:
+\begin{itemize}
+\item ex15  is an example  which solves in  parallel an operator using  a  finite  difference  scheme.  The  diagonal is  equals  to  4  and  4
+  extra-diagonals  representing the  neighbors in  each directions  is  equal to
+  -1. This  example is used in many  physical phenomena , for  exemple, heat and
+  fluid flow, wave propagation...
+\item ex54 is another example based on 2D problem discretized  with quadrilateral finite elements. For this example, the user can define the scaling of material coefficient in embedded circle, it is called $\alpha$.
+\end{itemize}
+For more technical details on  these applications, interested reader are invited
+to  read the  codes available  in the  PETSc sources.   Those problem  have been
+chosen because they  are scalable with many cores. We  have tested other problem
+but they are not scalable with many cores.
+
+
+
 
 \begin{table*}
 \begin{center}
@@ -843,6 +855,17 @@ Describe the problems ex15 and ex54
 \end{table*}
 
 
+\begin{figure}
+\centering
+  \includegraphics[width=0.45\textwidth]{nb_iter_sec_ex15_juqueen}
+\caption{Number of iterations per second with ex15 and the same parameters than in Table~\ref{tab:03}}
+\label{fig:01}
+\end{figure}
+
+
+
+
+
 \begin{table*}
 \begin{center}
 \begin{tabular}{|r|r|r|r|r|r|r|r|r|} 
@@ -900,7 +923,7 @@ Describe the problems ex15 and ex54
 %%%*********************************************************
 %%%*********************************************************
 \section{Conclusion}
-\label{sec:07}
+\label{sec:06}
 %The conclusion goes here. this is more of the conclusion
 %%%*********************************************************
 %%%*********************************************************