\usepackage{algpseudocode}
\usepackage{amsmath}
\usepackage{amssymb}
+\usepackage{multirow}
+\usepackage{graphicx}
\algnewcommand\algorithmicinput{\textbf{Input:}}
\algnewcommand\Input{\item[\algorithmicinput]}
%
% paper title
% can use linebreaks \\ within to get better formatting as desired
-\title{A Krylov two-stage algorithm to solve large sparse linear systems}
+\title{TSARM: A Two-Stage Algorithm with least-square Residual Minimization to solve large sparse linear systems}
%où
%\title{A two-stage algorithm with error minimization to solve large sparse linear systems}
%où
%\title{???}
+
+
+
% author names and affiliations
% use a multiple column layout for up to two different
% affiliations
-\author{\IEEEauthorblockN{Rapha\"el Couturier}
-\IEEEauthorblockA{Femto-ST Institute - DISC Department\\
-Universit\'e de Franche-Comt\'e, IUT de Belfort-Montb\'eliard\\
-19 avenue de Mar\'echal Juin, BP 527 \\
-90016 Belfort Cedex, France\\
-Email: raphael.couturier@univ-fcomte.fr}
-\and
-\IEEEauthorblockN{Lilia Ziane Khodja}
-\IEEEauthorblockA{Centre de Recherche INRIA Bordeaux Sud-Ouest\\
-200 avenue de la Vieille Tour\\
-33405 Talence Cedex, France\\
+\author{\IEEEauthorblockN{Rapha\"el Couturier\IEEEauthorrefmark{1}, Lilia Ziane Khodja \IEEEauthorrefmark{2} and Christophe Guyeux\IEEEauthorrefmark{1}}
+\IEEEauthorblockA{\IEEEauthorrefmark{1} Femto-ST Institute, University of Franche Comte, France\\
+Email: \{raphael.couturier,christophe.guyeux\}@univ-fcomte.fr}
+\IEEEauthorblockA{\IEEEauthorrefmark{2} INRIA Bordeaux Sud-Ouest, France\\
Email: lilia.ziane@inria.fr}
}
+
+
% conference papers do not typically use \thanks and this command
% is locked out in conference mode. If really needed, such as for
% the acknowledgment of grants, issue a \IEEEoverridecommandlockouts
\begin{abstract}
-%The abstract goes here. DO NOT USE SPECIAL CHARACTERS, SYMBOLS, OR MATH IN YOUR TITLE OR ABSTRACT.
+In this paper we propose a two stage iterative method which increases the
+convergence of Krylov iterative methods, typically those of GMRES variants. The
+principle of our approach is to build an external iteration over the Krylov
+method and to save the current residual frequently (for example, for each
+restart of GMRES). Then after a given number of outer iterations, a minimization
+step is applied on the matrix composed of the saved residuals in order to
+compute a better solution and make a new iteration if necessary. We prove that
+our method has the same convergence property than the inner method used. Some
+experiments using up to 16,394 cores show that compared to GMRES our algorithm
+can be around 7 times faster.
\end{abstract}
\begin{IEEEkeywords}
-Iterative Krylov methods; sparse linear systems; error minimization; PETSc; %à voir...
+Iterative Krylov methods; sparse linear systems; residual minimization; PETSc; %à voir...
\end{IEEEkeywords}
% no \IEEEPARstart
% You must have at least 2 lines in the paragraph with the drop letter
% (should never be an issue)
-Iterative methods are become more attractive than direct ones to solve very
-large sparse linear systems. They are more effective in a parallel context and
-require less memory and arithmetic operations than direct methods. A number of
-iterative methods are proposed and adapted by many researchers and the increased
-need for solving very large sparse linear systems triggered the development of
-efficient iterative techniques suitable for the parallel processing.
+
+Iterative methods became more attractive than direct ones to solve very large
+sparse linear systems. Iterative methods are more effecient in a parallel
+context, with thousands of cores, and require less memory and arithmetic
+operations than direct methods. A number of iterative methods are proposed and
+adapted by many researchers and the increased need for solving very large sparse
+linear systems triggered the development of efficient iterative techniques
+suitable for the parallel processing.
Most of the successful iterative methods currently available are based on Krylov
subspaces which consist in forming a basis of a sequence of successive matrix
In this paper we propose a two-stage algorithm based on two nested iterations
called inner-outer iterations. This algorithm consists in solving the sparse
linear system iteratively with a small number of inner iterations and restarts
-the outer step with a new solution minimizing some error functions over a Krylov
-subspace. This algorithm is iterative and easy to parallelize on large clusters
-and the minimization technique improves its convergence and performances.
+the outer step with a new solution minimizing some error functions over some
+previous residuals. This algorithm is iterative and easy to parallelize on large
+clusters and the minimization technique improves its convergence and
+performances.
The present paper is organized as follows. In Section~\ref{sec:02} some related
-works are presented. Section~\ref{sec:03} presents our two-stage algorithm based
-on Krylov subspace iteration methods. Section~\ref{sec:04} shows some
-experimental results obtained on large clusters of our algorithm using routines
-of PETSc toolkit.
+works are presented. Section~\ref{sec:03} presents our two-stage algorithm using
+a least-square residual minimization. Section~\ref{sec:04} describes some
+convergence results on this method. Section~\ref{sec:05} shows some experimental
+results obtained on large clusters of our algorithm using routines of PETSc
+toolkit. Finally Section~\ref{sec:06} concludes and gives some perspectives.
%%%*********************************************************
%%%*********************************************************
%%%*********************************************************
%%%*********************************************************
-\section{A Krylov two-stage algorithm}
+\section{Two-stage algorithm with least-square residuals minimization}
\label{sec:03}
A two-stage algorithm is proposed to solve large sparse linear systems of the
form $Ax=b$, where $A\in\mathbb{R}^{n\times n}$ is a sparse and square
inner-outer iteration solver based on iterative Krylov methods. The main key
points of our solver are given in Algorithm~\ref{algo:01}.
-In order to accelerate the convergence, the outer iteration is implemented as an
-iterative Krylov method which minimizes some error functions over a Krylov
-subspace~\cite{saad96}. At each iteration, the sparse linear system $Ax=b$ is
-solved iteratively with an iterative method, for example GMRES
-method~\cite{saad86} or some of its variants, and the Krylov subspace that we
-used is spanned by a basis $S$ composed of successive solutions issued from the
-inner iteration
-\begin{equation}
- S = \{x^1, x^2, \ldots, x^s\} \text{,~} s\leq n.
-\end{equation}
-The advantage of such a Krylov subspace is that we neither need an orthogonal
-basis nor any synchronization between processors to generate this basis. The
-algorithm is periodically restarted every $s$ iterations with a new initial
-guess $x=S\alpha$ which minimizes the residual norm $\|b-Ax\|_2$ over the Krylov
-subspace spanned by vectors of $S$, where $\alpha$ is a solution of the normal
-equations
-\begin{equation}
- R^TR\alpha = R^Tb,
-\end{equation}
-which is associated with the least-squares problem
+In order to accelerate the convergence, the outer iteration periodically applies
+a least-square minimization on the residuals computed by the inner solver. The
+inner solver is based on a Krylov method which does not require to be changed.
+
+At each outer iteration, the sparse linear system $Ax=b$ is solved, only for $m$
+iterations, using an iterative method restarting with the previous solution. For
+example, the GMRES method~\cite{Saad86} or some of its variants can be used as a
+inner solver. The current solution of the Krylov method is saved inside a matrix
+$S$ composed of successive solutions computed by the inner iteration.
+
+Periodically, every $s$ iterations, the minimization step is applied in order to
+compute a new solution $x$. For that, the previous residuals are computed with
+$(b-AS)$. The minimization of the residuals is obtained by
\begin{equation}
\underset{\alpha\in\mathbb{R}^{s}}{min}\|b-R\alpha\|_2
\label{eq:01}
\end{equation}
-such that $R=AS$ is a dense rectangular matrix in $\mathbb{R}^{n\times s}$,
-$s\ll n$, and $R^T$ denotes the transpose of matrix $R$. We use an iterative
-method to solve the least-squares problem~(\ref{eq:01}) such as CGLS
-~\cite{hestenes52} or LSQR~\cite{paige82} which are more appropriate than a
-direct method in the parallel context.
+with $R=AS$. Then the new solution $x$ is computed with $x=S\alpha$.
+
+
+In practice, $R$ is a dense rectangular matrix in $\mathbb{R}^{n\times s}$,
+$s\ll n$. In order to minimize~(\ref{eq:01}), a least-square method such as
+CGLS ~\cite{Hestenes52} or LSQR~\cite{Paige82} is used. Those methods are more
+appropriate than a direct method in a parallel context.
\begin{algorithm}[t]
-\caption{A Krylov two-stage algorithm}
+\caption{TSARM}
\begin{algorithmic}[1]
\Input $A$ (sparse matrix), $b$ (right-hand side)
\Output $x$ (solution vector)\vspace{0.2cm}
\State Set the initial guess $x^0$
- \For {$k=1,2,3,\ldots$ until convergence}
- \State Solve iteratively $Ax^k=b$
- \State $S_{k~mod~s}=x^k$
- \If {$k$ mod $s=0$ {\bf and} not convergence}
- \State Compute dense matrix $R=AS$
- \State Solve least-squares problem $\underset{\alpha\in\mathbb{R}^{s}}{min}\|b-R\alpha\|_2$
- \State Compute minimizer $x^k=S\alpha$
+ \For {$k=1,2,3,\ldots$ until convergence (error$<\epsilon_{tsarm}$)} \label{algo:conv}
+ \State $x^k=Solve(A,b,x^{k-1},max\_iter_{kryl})$ \label{algo:solve}
+ \State retrieve error
+ \State $S_{k~mod~s}=x^k$ \label{algo:store}
+ \If {$k$ mod $s=0$ {\bf and} error$>\epsilon_{tsarm}$}
+ \State $R=AS$ \Comment{compute dense matrix} \label{algo:matrix_mul}
+ \State Solve least-squares problem $\underset{\alpha\in\mathbb{R}^{s}}{min}\|b-R\alpha\|_2$ \label{algo:}
+ \State $x^k=S\alpha$ \Comment{compute new solution}
\EndIf
\EndFor
\end{algorithmic}
\label{algo:01}
\end{algorithm}
-Operation $S_{k~ mod~ s}=x^k$ consists in copying the residual $x_k$ into the
-column $k~ mod~ s$ of the matrix $S$. After the minimization, the matrix $S$ is
-reused with the new values of the residuals.
+Algorithm~\ref{algo:01} summarizes the principle of our method. The outer
+iteration is inside the for loop. Line~\ref{algo:solve}, the Krylov method is
+called for a maximum of $max\_iter_{kryl}$ iterations. In practice, we suggest to set this parameter
+equals to the restart number of the GMRES-like method. Moreover, a tolerance
+threshold must be specified for the solver. In practice, this threshold must be
+much smaller than the convergence threshold of the TSARM algorithm (i.e.
+$\epsilon_{tsarm}$). Line~\ref{algo:store}, $S_{k~ mod~ s}=x^k$ consists in copying the
+solution $x_k$ into the column $k~ mod~ s$ of the matrix $S$. After the
+minimization, the matrix $S$ is reused with the new values of the residuals. To
+solve the minimization problem, an iterative method is used. Two parameters are
+required for that: the maximum number of iteration and the threshold to stop the
+method.
+
+To summarize, the important parameters of TSARM are:
+\begin{itemize}
+\item $\epsilon_{tsarm}$ the threshold to stop the TSARM method
+\item $max\_iter_{kryl}$ the maximum number of iterations for the krylov method
+\item $s$ the number of outer iterations before applying the minimization step
+\item $max\_iter_{ls}$ the maximum number of iterations for the iterative least-square method
+\item $\epsilon_{ls}$ the threshold to stop the least-square method
+\end{itemize}
+
+
+The parallelisation of TSARM relies on the parallelization of all its
+parts. More precisely, except the least-square step, all the other parts are
+obvious to achieve out in parallel. In order to develop a parallel version of
+our code, we have chosen to use PETSc~\cite{petsc-web-page}. For
+line~\ref{algo:matrix_mul} the matrix-matrix multiplication is implemented and
+efficient since the matrix $A$ is sparse and since the matrix $S$ contains few
+colums in practice. As explained previously, at least two methods seem to be
+interesting to solve the least-square minimization, CGLS and LSQR.
+
+In the following we remind the CGLS algorithm. The LSQR method follows more or
+less the same principle but it take more place, so we briefly explain the parallelization of CGLS which is similar to LSQR.
+
+\begin{algorithm}[t]
+\caption{CGLS}
+\begin{algorithmic}[1]
+ \Input $A$ (matrix), $b$ (right-hand side)
+ \Output $x$ (solution vector)\vspace{0.2cm}
+ \State $r=b-Ax$
+ \State $p=A'r$
+ \State $s=p$
+ \State $g=||s||^2_2$
+ \For {$k=1,2,3,\ldots$ until convergence (g$<\epsilon_{ls}$)} \label{algo2:conv}
+ \State $q=Ap$
+ \State $\alpha=g/||q||^2_2$
+ \State $x=x+alpha*p$
+ \State $r=r-alpha*q$
+ \State $s=A'*r$
+ \State $g_{old}=g$
+ \State $g=||s||^2_2$
+ \State $\beta=g/g_{old}$
+ \EndFor
+\end{algorithmic}
+\label{algo:02}
+\end{algorithm}
+
+
+In each iteration of CGLS, there is two matrix-vector multiplications and some
+classical operations: dots, norm, multiplication and addition on vectors. All
+these operations are easy to implement in PETSc or similar environment.
+
+
%%%*********************************************************
%%%*********************************************************
+\section{Convergence results}
+\label{sec:04}
+
+
%%%*********************************************************
%%%*********************************************************
\section{Experiments using petsc}
-\label{sec:04}
+\label{sec:05}
+
+
+In order to see the influence of our algorithm with only one processor, we first
+show a comparison with the standard version of GMRES and our algorithm. In
+table~\ref{tab:01}, we show the matrices we have used and some of them
+characteristics. For all the matrices, the name, the field, the number of rows
+and the number of nonzero elements is given.
+
+\begin{table*}
+\begin{center}
+\begin{tabular}{|c|c|r|r|r|}
+\hline
+Matrix name & Field &\# Rows & \# Nonzeros \\\hline \hline
+crashbasis & Optimization & 160,000 & 1,750,416 \\
+parabolic\_fem & Computational fluid dynamics & 525,825 & 2,100,225 \\
+epb3 & Thermal problem & 84,617 & 463,625 \\
+atmosmodj & Computational fluid dynamics & 1,270,432 & 8,814,880 \\
+bfwa398 & Electromagnetics problem & 398 & 3,678 \\
+torso3 & 2D/3D problem & 259,156 & 4,429,042 \\
+\hline
+
+\end{tabular}
+\caption{Main characteristics of the sparse matrices chosen from the Davis collection}
+\label{tab:01}
+\end{center}
+\end{table*}
+
+The following parameters have been chosen for our experiments. As by default
+the restart of GMRES is performed every 30 iterations, we have chosen to stop
+the GMRES every 30 iterations, $max\_iter_{kryl}=30$). $s$ is set to 8. CGLS is
+chosen to minimize the least-squares problem with the following parameters:
+$\epsilon_{ls}=1e-40$ and $max\_iter_{ls}=20$. The external precision is set to
+$\epsilon_{tsarm}=1e-10$. Those experiments have been performed on a Intel(R)
+Core(TM) i7-3630QM CPU @ 2.40GHz with the version 3.5.1 of PETSc.
+
+
+In Table~\ref{tab:02}, some experiments comparing the solving of the linear
+systems obtained with the previous matrices with a GMRES variant and with out 2
+stage algorithm are given. In the second column, it can be noticed that either
+gmres or fgmres is used to solve the linear system. According to the matrices,
+different preconditioner is used. With the 2 stage algorithm, the same solver
+and the same preconditionner is used. This Table shows that the 2 stage
+algorithm can drastically reduce the number of iterations to reach the
+convergence when the number of iterations for the normal GMRES is more or less
+greater than 500. In fact this also depends on tow parameters: the number of
+iterations to stop GMRES and the number of iterations to perform the
+minimization.
+
+
+\begin{table}
+\begin{center}
+\begin{tabular}{|c|c|r|r|r|r|}
+\hline
+
+ \multirow{2}{*}{Matrix name} & Solver / & \multicolumn{2}{c|}{GMRES} & \multicolumn{2}{c|}{TSARM CGLS} \\
+\cline{3-6}
+ & precond & Time & \# Iter. & Time & \# Iter. \\\hline \hline
+
+crashbasis & gmres / none & 15.65 & 518 & 14.12 & 450 \\
+parabolic\_fem & gmres / ilu & 1009.94 & 7573 & 401.52 & 2970 \\
+epb3 & fgmres / sor & 8.67 & 600 & 8.21 & 540 \\
+atmosmodj & fgmres / sor & 104.23 & 451 & 88.97 & 366 \\
+bfwa398 & gmres / none & 1.42 & 9612 & 0.28 & 1650 \\
+torso3 & fgmres / sor & 37.70 & 565 & 34.97 & 510 \\
+\hline
+
+\end{tabular}
+\caption{Comparison of (F)GMRES and 2 stage (F)GMRES algorithms in sequential with some matrices, time is expressed in seconds.}
+\label{tab:02}
+\end{center}
+\end{table}
+
+
+
+
+
+In the following we describe the applications of PETSc we have
+experimented. Those applications are available in the ksp part which is suited
+for scalable linear equations solvers:
+\begin{itemize}
+\item ex15 is an example which solves in parallel an operator using a finite
+ difference scheme. The diagonal is equals to 4 and 4 extra-diagonals
+ representing the neighbors in each directions is equal to -1. This example is
+ used in many physical phenomena , for exemple, heat and fluid flow, wave
+ propagation...
+\item ex54 is another example based on 2D problem discretized with quadrilateral
+ finite elements. For this example, the user can define the scaling of material
+ coefficient in embedded circle, it is called $\alpha$.
+\end{itemize}
+For more technical details on these applications, interested reader are invited
+to read the codes available in the PETSc sources. Those problem have been
+chosen because they are scalable with many cores. We have tested other problem
+but they are not scalable with many cores.
+
+
+
+
+\begin{table*}
+\begin{center}
+\begin{tabular}{|r|r|r|r|r|r|r|r|r|}
+\hline
+
+ nb. cores & precond & \multicolumn{2}{c|}{GMRES} & \multicolumn{2}{c|}{TSARM CGLS} & \multicolumn{2}{c|}{TSARM LSQR} & best gain \\
+\cline{3-8}
+ & & Time & \# Iter. & Time & \# Iter. & Time & \# Iter. & \\\hline \hline
+ 2,048 & mg & 403.49 & 18,210 & 73.89 & 3,060 & 77.84 & 3,270 & 5.46 \\
+ 2,048 & sor & 745.37 & 57,060 & 87.31 & 6,150 & 104.21 & 7,230 & 8.53 \\
+ 4,096 & mg & 562.25 & 25,170 & 97.23 & 3,990 & 89.71 & 3,630 & 6.27 \\
+ 4,096 & sor & 912.12 & 70,194 & 145.57 & 9,750 & 168.97 & 10,980 & 6.26 \\
+ 8,192 & mg & 917.02 & 40,290 & 148.81 & 5,730 & 143.03 & 5,280 & 6.41 \\
+ 8,192 & sor & 1,404.53 & 106,530 & 212.55 & 12,990 & 180.97 & 10,470 & 7.76 \\
+ 16,384 & mg & 1,430.56 & 63,930 & 237.17 & 8,310 & 244.26 & 7,950 & 6.03 \\
+ 16,384 & sor & 2,852.14 & 216,240 & 418.46 & 21,690 & 505.26 & 23,970 & 6.82 \\
+\hline
+
+\end{tabular}
+\caption{Comparison of FGMRES and 2 stage FGMRES algorithms for ex15 of Petsc with 25000 components per core on Juqueen (threshold 1e-3, restart=30, s=12), time is expressed in seconds.}
+\label{tab:03}
+\end{center}
+\end{table*}
+
+
+\begin{figure}
+\centering
+ \includegraphics[width=0.45\textwidth]{nb_iter_sec_ex15_juqueen}
+\caption{Number of iterations per second with ex15 and the same parameters than in Table~\ref{tab:03}}
+\label{fig:01}
+\end{figure}
+
+
+
+
+
+\begin{table*}
+\begin{center}
+\begin{tabular}{|r|r|r|r|r|r|r|r|r|}
+\hline
+
+ nb. cores & threshold & \multicolumn{2}{c|}{GMRES} & \multicolumn{2}{c|}{TSARM CGLS} & \multicolumn{2}{c|}{TSARM LSQR} & best gain \\
+\cline{3-8}
+ & & Time & \# Iter. & Time & \# Iter. & Time & \# Iter. & \\\hline \hline
+ 2,048 & 8e-5 & 108.88 & 16,560 & 23.06 & 3,630 & 22.79 & 3,630 & 4.77 \\
+ 2,048 & 6e-5 & 194.01 & 30,270 & 35.50 & 5,430 & 27.74 & 4,350 & 6.99 \\
+ 4,096 & 7e-5 & 160.59 & 22,530 & 35.15 & 5,130 & 29.21 & 4,350 & 5.49 \\
+ 4,096 & 6e-5 & 249.27 & 35,520 & 52.13 & 7,950 & 39.24 & 5,790 & 6.35 \\
+ 8,192 & 6e-5 & 149.54 & 17,280 & 28.68 & 3,810 & 29.05 & 3,990 & 5.21 \\
+ 8,192 & 5e-5 & 785.04 & 109,590 & 76.07 & 10,470 & 69.42 & 9,030 & 11.30 \\
+ 16,384 & 4e-5 & 718.61 & 86,400 & 98.98 & 10,830 & 131.86 & 14,790 & 7.26 \\
+\hline
+
+\end{tabular}
+\caption{Comparison of FGMRES and 2 stage FGMRES algorithms for ex54 of Petsc (both with the MG preconditioner) with 25000 components per core on Curie (restart=30, s=12), time is expressed in seconds.}
+\label{tab:04}
+\end{center}
+\end{table*}
+
+
+
+
+
+\begin{table*}
+\begin{center}
+\begin{tabular}{|r|r|r|r|r|r|r|r|r|r|r|}
+\hline
+
+ nb. cores & \multicolumn{2}{c|}{GMRES} & \multicolumn{2}{c|}{TSARM CGLS} & \multicolumn{2}{c|}{TSARM LSQR} & best gain & \multicolumn{3}{c|}{efficiency} \\
+\cline{2-7} \cline{9-11}
+ & Time & \# Iter. & Time & \# Iter. & Time & \# Iter. & & GMRES & TS CGLS & TS LSQR\\\hline \hline
+ 512 & 3,969.69 & 33,120 & 709.57 & 5,790 & 622.76 & 5,070 & 6.37 & 1 & 1 & 1 \\
+ 1024 & 1,530.06 & 25,860 & 290.95 & 4,830 & 307.71 & 5,070 & 5.25 & 1.30 & 1.21 & 1.01 \\
+ 2048 & 919.62 & 31,470 & 237.52 & 8,040 & 194.22 & 6,510 & 4.73 & 1.08 & .75 & .80\\
+ 4096 & 405.60 & 28,380 & 111.67 & 7,590 & 91.72 & 6,510 & 4.42 & 1.22 & .79 & .84 \\
+ 8192 & 785.04 & 109,590 & 76.07 & 10,470 & 69.42 & 9,030 & 11.30 & .32 & .58 & .56 \\
+
+\hline
+
+\end{tabular}
+\caption{Comparison of FGMRES and 2 stage FGMRES algorithms for ex54 of Petsc (both with the MG preconditioner) with 204,919,225 components on Curie with different number of cores (restart=30, s=12, threshol 5e-5), time is expressed in seconds.}
+\label{tab:05}
+\end{center}
+\end{table*}
%%%*********************************************************
%%%*********************************************************
%%%*********************************************************
%%%*********************************************************
\section{Conclusion}
-\label{sec:05}
+\label{sec:06}
%The conclusion goes here. this is more of the conclusion
%%%*********************************************************
%%%*********************************************************
+future plan : \\
+- study other kinds of matrices, problems, inner solvers\\
+- test the influence of all the parameters\\
+- adaptative number of outer iterations to minimize\\
+- other methods to minimize the residuals?\\
+- implement our solver inside PETSc
+
% conference papers do not normally have an appendix
%%%*********************************************************
%%%*********************************************************
\section*{Acknowledgment}
-%The authors would like to thank...
-%more thanks here
-%%%*********************************************************
-%%%*********************************************************
+This paper is partially funded by the Labex ACTION program (contract
+ANR-11-LABX-01-01). We acknowledge PRACE for awarding us access to resource
+Curie and Juqueen respectively based in France and Germany.
+
% trigger a \newpage just before the given reference
% http://www.ctan.org/tex-archive/biblio/bibtex/contrib/doc/
% The IEEEtran BibTeX style support page is at:
% http://www.michaelshell.org/tex/ieeetran/bibtex/
-%\bibliographystyle{IEEEtran}
+\bibliographystyle{IEEEtran}
% argument is your BibTeX string definitions and bibliography database(s)
-%\bibliography{IEEEabrv,../bib/paper}
+\bibliography{biblio}
%
% <OR> manually copy in the resultant .bbl file
% set second argument of \begin to the number of references
% (used to reserve space for the reference number labels box)
-\begin{thebibliography}{1}
+%% \begin{thebibliography}{1}
-\bibitem{saad86} Y.~Saad and M.~H.~Schultz, \emph{GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems}, SIAM Journal on Scientific and Statistical Computing, 7(3):856--869, 1986.
+%% \bibitem{saad86} Y.~Saad and M.~H.~Schultz, \emph{GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems}, SIAM Journal on Scientific and Statistical Computing, 7(3):856--869, 1986.
-\bibitem{saad96} Y.~Saad, \emph{Iterative Methods for Sparse Linear Systems}, PWS Publishing, New York, 1996.
+%% \bibitem{saad96} Y.~Saad, \emph{Iterative Methods for Sparse Linear Systems}, PWS Publishing, New York, 1996.
-\bibitem{hestenes52} M.~R.~Hestenes and E.~Stiefel, \emph{Methods of conjugate gradients for solving linear system}, Journal of Research of National Bureau of Standards, B49:409--436, 1952.
+%% \bibitem{hestenes52} M.~R.~Hestenes and E.~Stiefel, \emph{Methods of conjugate gradients for solving linear system}, Journal of Research of National Bureau of Standards, B49:409--436, 1952.
-\bibitem{paige82} C.~C.~Paige and A.~M.~Saunders, \emph{LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares}, ACM Trans. Math. Softw. 8(1):43--71, 1982.
-\end{thebibliography}
+%% \bibitem{paige82} C.~C.~Paige and A.~M.~Saunders, \emph{LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares}, ACM Trans. Math. Softw. 8(1):43--71, 1982.
+%% \end{thebibliography}