]> AND Private Git Repository - GMRES2stage.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
abstract à relire
[GMRES2stage.git] / paper.tex
index 087ff6e257655a06476ddf5d6e41b9f34f8687cd..51eab5cb9fd26068dcd36d1868bf6a73a32f92f3 100644 (file)
--- a/paper.tex
+++ b/paper.tex
 \usepackage{algpseudocode}
 \usepackage{amsmath}
 \usepackage{amssymb}
 \usepackage{algpseudocode}
 \usepackage{amsmath}
 \usepackage{amssymb}
+\usepackage{multirow}
 
 \algnewcommand\algorithmicinput{\textbf{Input:}}
 \algnewcommand\Input{\item[\algorithmicinput]}
 
 \algnewcommand\algorithmicinput{\textbf{Input:}}
 \algnewcommand\Input{\item[\algorithmicinput]}
 %
 % paper title
 % can use linebreaks \\ within to get better formatting as desired
 %
 % paper title
 % can use linebreaks \\ within to get better formatting as desired
-\title{A Krylov two-stage algorithm to solve large sparse linear systems}
+\title{TSARM: A Two-Stage Algorithm with least-square Residual Minimization to solve large sparse linear systems}
 %où
 %\title{A two-stage algorithm with error minimization to solve large sparse linear systems}
 %où
 %où
 %\title{A two-stage algorithm with error minimization to solve large sparse linear systems}
 %où
 % use a multiple column layout for up to two different
 % affiliations
 
 % use a multiple column layout for up to two different
 % affiliations
 
-\author{\IEEEauthorblockN{Rapha\"el Couturier}
-\IEEEauthorblockA{Femto-ST Institute - DISC Department\\
-Universit\'e de Franche-Comt\'e, IUT de Belfort-Montb\'eliard\\
-19 avenue de Mar\'echal Juin, BP 527 \\
-90016 Belfort Cedex, France\\
-Email: raphael.couturier@univ-fcomte.fr}
-\and
-\IEEEauthorblockN{Lilia Ziane Khodja}
-\IEEEauthorblockA{Centre de Recherche INRIA Bordeaux Sud-Ouest\\
-200 avenue de la Vieille Tour\\
-33405 Talence Cedex, France\\
+\author{\IEEEauthorblockN{Rapha\"el Couturier\IEEEauthorrefmark{1}, Lilia Ziane Khodja \IEEEauthorrefmark{2} and Christophe Guyeux\IEEEauthorrefmark{1}}
+\IEEEauthorblockA{\IEEEauthorrefmark{1} Femto-ST Institute, University of Franche Comte, France\\
+Email: \{raphael.couturier,christophe.guyeux\}@univ-fcomte.fr}
+\IEEEauthorblockA{\IEEEauthorrefmark{2} INRIA Bordeaux Sud-Ouest, France\\
 Email: lilia.ziane@inria.fr}
 }
 
 Email: lilia.ziane@inria.fr}
 }
 
+
+
 % conference papers do not typically use \thanks and this command
 % is locked out in conference mode. If really needed, such as for
 % the acknowledgment of grants, issue a \IEEEoverridecommandlockouts
 % conference papers do not typically use \thanks and this command
 % is locked out in conference mode. If really needed, such as for
 % the acknowledgment of grants, issue a \IEEEoverridecommandlockouts
@@ -427,7 +423,16 @@ Email: lilia.ziane@inria.fr}
 
 
 \begin{abstract}
 
 
 \begin{abstract}
-%The abstract goes here. DO NOT USE SPECIAL CHARACTERS, SYMBOLS, OR MATH IN YOUR TITLE OR ABSTRACT.
+In  this paper  we propose  a  two stage  iterative method  which increases  the
+convergence of Krylov iterative methods,  typically those of GMRES variants. The
+principle of  our approach  is to  build an external  iteration over  the Krylov
+method  and to  save  the current  residual  frequently (for  example, for  each
+restart of GMRES). Then after a given number of outer iterations, a minimization
+step is applied on the matrix composed of the save residuals in order to compute
+a  better solution and  make a  new iteration  if necessary.  We prove  that our
+method  has the  same  convergence property  than  the inner  method used.  Some
+experiments using up  to 16,394 cores show that compared  to GMRES our algorithm
+can be around 7 times faster.
 \end{abstract}
 
 \begin{IEEEkeywords}
 \end{abstract}
 
 \begin{IEEEkeywords}
@@ -636,8 +641,8 @@ direct method in the parallel context.
   \Input $A$ (sparse matrix), $b$ (right-hand side)
   \Output $x$ (solution vector)\vspace{0.2cm}
   \State Set the initial guess $x^0$
   \Input $A$ (sparse matrix), $b$ (right-hand side)
   \Output $x$ (solution vector)\vspace{0.2cm}
   \State Set the initial guess $x^0$
-  \For {$k=1,2,3,\ldots$ until convergence}
-    \State Solve iteratively $Ax^k=b$
+  \For {$k=1,2,3,\ldots$ until convergence} \label{algo:conv}
+    \State Solve iteratively $Ax^k=b$  \label{algo:solve}
     \State $S_{k~mod~s}=x^k$ 
     \If {$k$ mod $s=0$ {\bf and} not convergence}
       \State Compute dense matrix $R=AS$
     \State $S_{k~mod~s}=x^k$ 
     \If {$k$ mod $s=0$ {\bf and} not convergence}
       \State Compute dense matrix $R=AS$
@@ -663,6 +668,110 @@ reused with the new values of the residuals.
 \section{Experiments using petsc}
 \label{sec:04}
 
 \section{Experiments using petsc}
 \label{sec:04}
 
+
+In order to see the influence of our algorithm with only one processor, we first
+show  a comparison  with the  standard version  of GMRES  and our  algorithm. In
+table~\ref{tab:01},  we  show  the  matrices  we  have used  and  some  of  them
+characteristics. For all  the matrices, the name, the field,  the number of rows
+and the number of nonzero elements is given.
+
+\begin{table}
+\begin{center}
+\begin{tabular}{|c|c|r|r|r|} 
+\hline
+Matrix name              & Field             &\# Rows   & \# Nonzeros   \\\hline \hline
+crashbasis         & Optimization      & 160,000  &  1,750,416  \\
+parabolic\_fem     & Computational fluid dynamics  & 525,825 & 2,100,225 \\
+epb3               & Thermal problem   & 84,617  & 463,625  \\
+atmosmodj          & Computational fluid dynamics  & 1,270,432 & 8,814,880 \\
+bfwa398            & Electromagnetics problem & 398 & 3,678 \\
+torso3             & 2D/3D problem & 259,156 & 4,429,042 \\
+\hline
+
+\end{tabular}
+\caption{Main characteristics of the sparse matrices chosen from the Davis collection}
+\label{tab:01}
+\end{center}
+\end{table}
+
+The following  parameters have been chosen  for our experiments.   As by default
+the restart  of GMRES is performed every  30 iterations, we have  chosen to stop
+the     GMRES    every     30    iterations     (line     \ref{algo:solve}    in
+Algorithm~\ref{algo:01}).   $s$ is  set to  8. CGLS  is chosen  to  minimize the
+least-squares  problem.  Two  conditions  are  used to  stop  CGLS,  either  the
+precision is under $1e-40$ or the  number of iterations is greater to $20$.  The
+external   precision    is   set    to   $1e-10$   (line    \ref{algo:conv}   in
+Algorithm~\ref{algo:01}).  Those  experiments have been performed  on a Intel(R)
+Core(TM) i7-3630QM CPU @ 2.40GHz with the version 3.5.1 of PETSc.
+
+
+In  Table~\ref{tab:02}, some  experiments comparing  the solving  of  the linear
+systems obtained with the previous matrices  with a GMRES variant and with out 2
+stage algorithm are  given. In the second column, it can  be noticed that either
+gmres or fgmres is used to  solve the linear system.  According to the matrices,
+different preconditioner is  used.  With the 2 stage  algorithm, the same solver
+and  the same  preconditionner  is used.   This  Table shows  that  the 2  stage
+algorithm  can  drastically  reduce  the  number  of  iterations  to  reach  the
+convergence when the  number of iterations for the normal GMRES  is more or less
+greater than  500. In fact  this also depends  on tow parameters: the  number of
+iterations  to  stop  GMRES  and   the  number  of  iterations  to  perform  the
+minimization.
+
+
+\begin{table}
+\begin{center}
+\begin{tabular}{|c|c|r|r|r|r|} 
+\hline
+
+ \multirow{2}{*}{Matrix name}  & Solver /   & \multicolumn{2}{c|}{gmres variant} & \multicolumn{2}{c|}{2 stage CGLS} \\ 
+\cline{3-6}
+       &  precond             & Time  & \# Iter.  & Time  & \# Iter.  \\\hline \hline
+
+crashbasis         & gmres / none             &  15.65     & 518  &  14.12 & 450  \\
+parabolic\_fem     & gmres / ilu           & 1009.94   & 7573 & 401.52 & 2970 \\
+epb3               & fgmres / sor             &  8.67     & 600  &  8.21 & 540  \\
+atmosmodj          &  fgmres / sor & 104.23  & 451 & 88.97 & 366  \\
+bfwa398            & gmres / none  & 1.42 & 9612 & 0.28 & 1650 \\
+torso3             & fgmres / sor  & 37.70 & 565 & 34.97 & 510 \\
+\hline
+
+\end{tabular}
+\caption{Comparison of (F)GMRES and 2 stage (F)GMRES algorithms in sequential with some matrices, time is expressed in seconds.}
+\label{tab:02}
+\end{center}
+\end{table}
+
+
+
+
+Larger experiments ....
+
+\begin{table*}
+\begin{center}
+\begin{tabular}{|r|r|r|r|r|r|r|r|r|} 
+\hline
+
+  nb. cores & precond   & \multicolumn{2}{c|}{gmres variant} & \multicolumn{2}{c|}{2 stage CGLS} &  \multicolumn{2}{c|}{2 stage LSQR} & best gain \\ 
+\cline{3-8}
+             &                       & Time  & \# Iter.  & Time  & \# Iter. & Time  & \# Iter. & \\\hline \hline
+  2,048      & mg                    & 403.49   & 18,210    & 73.89  & 3,060   & 77.84  & 3,270  & 5.46 \\
+  2,048      & sor                   & 745.37   & 57,060    & 87.31  & 6,150   & 104.21 & 7,230  & 8.53 \\
+  4,096      & mg                    & 562.25   & 25,170    & 97.23  & 3,990   & 89.71  & 3,630  & 6.27 \\
+  4,096      & sor                   & 912.12   & 70,194    & 145.57 & 9,750   & 168.97 & 10,980 & 6.26 \\
+  8,192      & mg                    & 917.02   & 40,290    & 148.81 & 5,730   & 143.03 & 5,280  & 6.41 \\
+  8,192      & sor                   & 1,404.53 & 106,530   & 212.55 & 12,990  & 180.97 & 10,470 & 7.76 \\
+  16,384     & mg                    & 1,430.56 & 63,930    & 237.17 & 8,310   & 244.26 & 7,950  & 6.03 \\
+  16,384     & sor                   & 2,852.14 & 216,240   & 418.46 & 21,690  & 505.26 & 23,970 & 6.82 \\
+\hline
+
+\end{tabular}
+\caption{Comparison of FGMRES and 2 stage FGMRES algorithms for ex15 of Petsc with 25000 components per core on Juqueen (threshold 1e-3, restart=30, s=12),  time is expressed in seconds.}
+\label{tab:03}
+\end{center}
+\end{table*}
+
+
+
 %%%*********************************************************
 %%%*********************************************************
 
 %%%*********************************************************
 %%%*********************************************************
 
@@ -677,6 +786,11 @@ reused with the new values of the residuals.
 %%%*********************************************************
 
 
 %%%*********************************************************
 
 
+future plan : \\
+- study other kinds of matrices, problems, inner solvers\\
+- adaptative number of outer iterations to minimize\\
+- implement our solver inside PETSc
+
 
 % conference papers do not normally have an appendix
 
 
 % conference papers do not normally have an appendix
 
@@ -686,10 +800,10 @@ reused with the new values of the residuals.
 %%%*********************************************************
 %%%*********************************************************
 \section*{Acknowledgment}
 %%%*********************************************************
 %%%*********************************************************
 \section*{Acknowledgment}
-%The authors would like to thank...
-%more thanks here
-%%%*********************************************************
-%%%*********************************************************
+This  paper  is   partially  funded  by  the  Labex   ACTION  program  (contract
+ANR-11-LABX-01-01).   We acknowledge PRACE  for awarding  us access  to resource
+Curie and Juqueen respectively based in France and Germany.
+
 
 
 % trigger a \newpage just before the given reference
 
 
 % trigger a \newpage just before the given reference