]> AND Private Git Repository - GMRES2stage.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
12-10-2014 10
[GMRES2stage.git] / paper.tex
index 32e9a3f21b3f152a563c440410fb2971d29c943a..a7d529d4c051a24879192c951d113af3c63b69cf 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -601,13 +601,19 @@ is summarized while intended perspectives are provided.
 %%%*********************************************************
 \section{Related works}
 \label{sec:02} 
-%GMRES method is one of the most widely used iterative solvers chosen to deal with the sparsity and the large order of linear systems. It was initially developed by Saad \& al.~\cite{Saad86} to deal with non-symmetric and non-Hermitian problems, and indefinite symmetric problems too. The convergence of the restarted GMRES with preconditioning is faster and more stable than those of some other iterative solvers. 
+Krylov subspace iteration methods have increasingly become useful and successful techniques for solving linear and nonlinear systems and eigenvalue problems, especially since the increase development of the preconditioners~\cite{Saad2003,Meijerink77}. One reason of the popularity of these methods is their generality, simplicity and efficiency to solve systems of equations arising from very large and complex problems. %A Krylov method is based on a projection process onto a Krylov subspace spanned by vectors and it forms a sequence of approximations by minimizing the residual over the subspace formed~\cite{}.
 
-%The next two chapters explore a few methods which are considered currently to be among the most important iterative techniques available for solving large linear systems. These techniques are based on projection processes, both orthogonal and oblique, onto Krylov subspaces, which are subspaces spanned by vectors of the form p(A)v where p is a polynomial. In short, these techniques approximate A −1 b by p(A)b, where p is a “good” polynomial. This chapter covers methods derived from, or related to, the Arnoldi orthogonalization. The next chapter covers methods based on Lanczos biorthogonalization.
+GMRES is one of the most widely used Krylov iterative method for solving sparse and large linear systems. It is developed by Saad and al.~\cite{Saad86} as a generalized method to deal with unsymmetric and non-Hermitian problems, and indefinite symmetric problems too. In its original version called full GMRES, it minimizes the residual over the current Krylov subspace until convergence in at most $n$ iterations, where $n$ is the size of the sparse matrix. It should be noted that full GMRES is too expensive in the case of large matrices since the required orthogonalization process per iteration grows quadratically with the number of iterations. For that reason, in practice GMRES is restarted after each $m\ll n$ iterations to avoid the storage of a large orthonormal basis. However, the convergence behavior of the restarted GMRES, called GMRES($m$), in many cases depends quite critically on the value of $m$~\cite{Huang89}. Therefore in most cases, a preconditioning technique is applied to the restarted GMRES method in order to improve its convergence.
 
-%Krylov subspace techniques have inceasingly been viewed as general purpose iterative methods, especially since the popularization of the preconditioning techniqes.
+In order to enhance the robustness of Krylov iterative solvers, some techniques have been proposed allowing the use of different preconditioners, if necessary, within the iteration instead of restarting. Those techniques may lead to considerable savings in CPU time and memory requirements. Van der Vorst in~\cite{Vorst94} has proposed variants of the GMRES algorithm in which a different preconditioner is applied in each iteration, so-called GMRESR family of nested methods. In fact, the GMRES method is effectively preconditioned with other iterative schemes (or GMRES itself), where the iterations of the GMRES method are called outer iterations while the iterations of the preconditioning process referred to as inner iterations. Saad in~\cite{Saad:1993} has proposed FGMRES which is another variant of the GMRES algorithm using a variable preconditioner. In FGMRES the search directions are preconditioned whereas in GMRESR the residuals are preconditioned. However in practice the good preconditioners are those based on direct methods, as ILU preconditioners, which are not easy to parallelize and suffer from the scalability problems on large clusters of thousands of cores.  
+
+Recently, communication-avoiding methods have been developed to reduce the communication overheads in Krylov subspace iterative solvers. On modern computer architectures, communications between processors are much slower than floating-point arithmetic operations on a given processor. Communication-avoiding techniques reduce either communications between processors or data movements between levels of the memory hierarchy, by reformulating the communication-bound kernels (more frequently SpMV kernels) and the orthogonalization operations within the Krylov iterative solver. Different works have studied the communication-avoiding techniques for the GMRES method, so-called CA-GMRES, on multicore processors and multi-GPU machines~\cite{Mohiyuddin2009,Hoemmen2010,Yamazaki2014}. 
+
+Compared  to all these  works and  to all  the other  works on  Krylov iterative
+method, the originality of our work is to build a second iteration over a Krylov
+iterative method and to minimize the residuals with a least-squares method after
+a given number of outer iterations.
 
-%Preconditioned Krylov-subspace iterations are a key ingredient in many modern linear solvers, including in solvers that employ support preconditioners. 
 %%%*********************************************************
 %%%*********************************************************
 
@@ -1106,11 +1112,25 @@ taken into account with TSIRM.
 \end{figure}
 
 
-Concerning the  experiments some  other remarks are  interesting. We  can tested
-other examples  of PETSc  (ex29, ex45,  ex49). For all  these examples,  we also
-obtained  similar  gain between  GMRES  and TSIRM  but  those  examples are  not
-scalable  with many  cores. In  general,  we had  some problems  with more  than
-$4,096$ cores. 
+Concerning the  experiments some  other remarks are  interesting.
+\begin{itemize}
+\item We  can tested other examples of  PETSc (ex29, ex45, ex49).  For all these
+  examples,  we also obtained  similar gain  between GMRES  and TSIRM  but those
+  examples are  not scalable with many  cores. In general, we  had some problems
+  with more than $4,096$ cores.
+\item We have tested many iterative  solvers available in PETSc.  In fast, it is
+  possible to use most of them with TSIRM. From our point of view, the condition
+  to  use  a  solver inside  TSIRM  is  that  the  solver  must have  a  restart
+  feature. More  precisely, the solver must  support to be  stoped and restarted
+  without decrease its  converge. That is why  with GMRES we stop it  when it is
+  naturraly  restarted (i.e.  with  $m$ the  restart parameter).   The Conjugate
+  Gradient (CG) and all its variants do not have ``restarted'' version in PETSc,
+  so they  are not  efficient.  They  will converge with  TSIRM but  not quickly
+  because if  we compare  a normal CG  with a CG  for which  we stop it  each 16
+  iterations  for example,  the  normal CG  will  be for  more efficient.   Some
+  restarted CG  or CG variant versions exist  and may be interested  to study in
+  future works.
+\end{itemize}
 %%%*********************************************************
 %%%*********************************************************