]> AND Private Git Repository - GMRES2stage.git/blobdiff - IJHPCN/paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
aa
[GMRES2stage.git] / IJHPCN / paper.tex
index 2d0bd55e7f0f6607e8259b4a612a33110aec56bd..253da34dce01091f35542a178f8fa3b0b297f8c4 100644 (file)
@@ -1033,7 +1033,7 @@ cores to more than 16 with 8,192 cores.
 \r
 %%NEW\r
 \subsection{Influence of parameters for TSIRM}\r
-In this section we present some experimental results in order to study the influence of some parameters on the TSIRM algorithm. We conducted experiments on $16$ cores to solve 3D problems of size $200,000$ components per core. We solved nonlinear problems token from examples of PETSc. We fixed some parameters of the TSIRM algorithm as follows: the nonlinear systems are solved with a precision of $10^{-8}$, block Jacobi preconditioner is used, the tolerance threshold $\epsilon_{tsirm}$ is $10^{-8}$ , the maximum number of iterations $max\_iter_{tsirm}$ is set to $10,000$ iterations, the FGMRES method is used as the inner solver with a tolerance threshold $\epsilon_{kryl}=10^{-10}$ and the least-squares problem is solved with a precision $\epsilon_{ls}=10^{-40}$ in the minimization process.\r
+In this section we present some experimental results in order to study the influence of some parameters on the TSIRM algorithm which are: the method to solve the linear least-squares problem in the minimization process, the number of inner iterations $max\_iter_{kryl}$, and the size $s$ of matrix $AS$ (i.e. matrix $S$) of the least-squares problem. We conducted experiments on $16$ cores to solve linear and nonlinear problems of size $200,000$ components per core. We solved problems token from examples {\it ksp}~\cite{ksp} and {\it snes}~\cite{snes} of PETSc. We fixed some parameters of the TSIRM algorithm as follows: the nonlinear systems are solved with a precision of $10^{-8}$, the tolerance threshold and the maximum number of iterations of TSIRM algorithm are $\epsilon_{tsirm}=10^{-10}$ and $max\_iter_{tsirm}=10,000$, the FGMRES method is used as the inner solver with a tolerance threshold $\epsilon_{kryl}=10^{-10}$, the additive Schwarz method (ASM) is used as a preconditioner, and the least-squares problem is solved with a precision $\epsilon_{ls}=10^{-40}$ in the minimization process.\r
 \r
 %time mpirun ../ex34 -da_grid_x 147 -da_grid_y 147 -da_grid_z 147 -ksp_type tsirm -ksp_pc_type asm -pc_type ksp -ksp_tsirm_tol 1e-10 -ksp_tsirm_maxiter 10000 -ksp_ksp_type fgmres -ksp_tsirm_max_inner_iter 30 -ksp_tsirm_inner_tol 1e-10 -ksp_tsirm_cgls 0 -ksp_tsirm_tol_ls 1.e-40 -ksp_tsirm_maxiter_ls 20 -ksp_tsirm_size_ls 10\r
 \begin{figure}[htbp]\r
@@ -1043,6 +1043,20 @@ In this section we present some experimental results in order to study the influ
 \label{fig:cgls} \r
 \end{figure}\r
 \r
+\begin{figure}[htbp]\r
+\centering\r
+  \includegraphics[width=0.5\textwidth]{ksp_ex12}\r
+\caption{Total number of iterations in example {\it ksp ex12} of PETSc by varyin the number of inner iterations and the size of the least-squares problem.}\r
+\label{fig:ksp_ex12} \r
+\end{figure}\r
+\r
+\begin{figure}[htbp]\r
+\centering\r
+  \includegraphics[width=0.5\textwidth]{ksp_ex34}\r
+\caption{Total number of iterations in example {\it ksp ex34} of PETSc by varyin the number of inner iterations and the size of the least-squares problem.}\r
+\label{fig:ksp_ex34} \r
+\end{figure}\r
+\r
 \begin{figure}[htbp]\r
 \centering\r
   \includegraphics[width=0.5\textwidth]{snes_ex14}\r
@@ -1050,6 +1064,14 @@ In this section we present some experimental results in order to study the influ
 \label{fig:snes_ex14} \r
 \end{figure}\r
 \r
+\begin{figure}[htbp]\r
+\centering\r
+  \includegraphics[width=0.5\textwidth]{snes_ex20}\r
+\caption{Total number of iterations in example {\it snes ex20} of PETSc by varyin the number of inner iterations and the size of the least-squares problem.}\r
+\label{fig:snes_ex20} \r
+\end{figure}\r
+\r
+\r
 \r
 \r
 \r