-Iterative methods are become more attractive than direct ones to solve large sparse linear systems. They are more effective in a parallel context and require less memory and arithmetic operations than direct methods. A number of iterative methods are proposed and adapted by many researchers and the increased need for solving very large sparse linear systems triggered the development of efficient iterative techniques suitable for the parallel processing.
-
-The most successful iterative methods currently available are those based on the Krylov subspace which consists in forming a basis of a sequence of successive matrix powers times the initial residual. These methods are based on orthogonality of vectors of the Krylov subspace basis to solve generalized linear systems. The most well-known iterative Krylov subspace methods are Conjugate Gradient method and GMRES method (generalized minimal residual).
-
-However, the iterative methods suffer from scalability problems on parallel computing platforms with many processors due to their need for reduction operations and collective communications to perform matrix-vector multiplications.
-
+Iterative methods are become more attractive than direct ones to solve very
+large sparse linear systems. They are more effective in a parallel context and
+require less memory and arithmetic operations than direct methods. A number of
+iterative methods are proposed and adapted by many researchers and the increased
+need for solving very large sparse linear systems triggered the development of
+efficient iterative techniques suitable for the parallel processing.
+
+Most of the successful iterative methods currently available are based on Krylov
+subspaces which consist in forming a basis of a sequence of successive matrix
+powers times an initial vector for example the residual. These methods are based
+on orthogonality of vectors of the Krylov subspace basis to solve linear
+systems. The most well-known iterative Krylov subspace methods are Conjugate
+Gradient method and GMRES method (generalized minimal residual).
+
+However, iterative methods suffer from scalability problems on parallel
+computing platforms with many processors due to their need for reduction
+operations and collective communications to perform matrix-vector
+multiplications. The communications on large clusters with thousands of cores
+and large sizes of messages can significantly affect the performances of
+iterative methods. In practice, Krylov subspace iteration methods are often used
+with preconditioners in order to increase their convergence and accelerate their
+performances. However, most of the good preconditioners are not scalable on
+large clusters.
+
+In this paper we propose a two-stage algorithm based on two nested iterations
+called inner-outer iterations. This algorithm consists in solving the sparse
+linear system iteratively with a small number of inner iterations and restarts
+the outer step with a new solution minimizing some error functions over a Krylov
+subspace. This algorithm is iterative and easy to parallelize on large clusters
+and the minimization technique improves its convergence and performances.
+
+The present paper is organized as follows. In Section~\ref{sec:02} some related
+works are presented. Section~\ref{sec:03} presents our two-stage algorithm based
+on Krylov subspace iteration methods. Section~\ref{sec:04} shows some
+experimental results obtained on large clusters of our algorithm using routines
+of PETSc toolkit.