]> AND Private Git Repository - GMRES2stage.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
new
[GMRES2stage.git] / paper.tex
index b1c6f598dc2f166a99d06aad3f3edc09f45fc6ff..8ffd3879c0596f27d8124b1e633842bd3728b0d4 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -431,9 +431,9 @@ convergence of Krylov iterative methods,  typically those of GMRES variants. The
 principle of  our approach  is to  build an external  iteration over  the Krylov
 method  and to  save  the current  residual  frequently (for  example, for  each
 restart of GMRES). Then after a given number of outer iterations, a minimization
 principle of  our approach  is to  build an external  iteration over  the Krylov
 method  and to  save  the current  residual  frequently (for  example, for  each
 restart of GMRES). Then after a given number of outer iterations, a minimization
-step is applied on the matrix composed of the save residuals in order to compute
-a  better solution and  make a  new iteration  if necessary.  We prove  that our
-method  has the  same  convergence property  than  the inner  method used.  Some
+step  is applied  on the  matrix composed  of the  saved residuals  in  order to
+compute a better solution and make  a new iteration if necessary.  We prove that
+our method has  the same convergence property than the  inner method used.  Some
 experiments using up  to 16,394 cores show that compared  to GMRES our algorithm
 can be around 7 times faster.
 \end{abstract}
 experiments using up  to 16,394 cores show that compared  to GMRES our algorithm
 can be around 7 times faster.
 \end{abstract}
@@ -793,7 +793,7 @@ minimization.
 \begin{tabular}{|c|c|r|r|r|r|} 
 \hline
 
 \begin{tabular}{|c|c|r|r|r|r|} 
 \hline
 
- \multirow{2}{*}{Matrix name}  & Solver /   & \multicolumn{2}{c|}{gmres variant} & \multicolumn{2}{c|}{2 stage CGLS} \\ 
+ \multirow{2}{*}{Matrix name}  & Solver /   & \multicolumn{2}{c|}{GMRES} & \multicolumn{2}{c|}{TSARM CGLS} \\ 
 \cline{3-6}
        &  precond             & Time  & \# Iter.  & Time  & \# Iter.  \\\hline \hline
 
 \cline{3-6}
        &  precond             & Time  & \# Iter.  & Time  & \# Iter.  \\\hline \hline
 
@@ -814,16 +814,29 @@ torso3             & fgmres / sor  & 37.70 & 565 & 34.97 & 510 \\
 
 
 
 
 
 
-Larger experiments ....\\
 
 
-Describe the problems ex15 and ex54
+In the following we describe the applications of PETSc we have experimented. Those applications are available in the ksp part which is suited for  scalable linear equations solvers:
+\begin{itemize}
+\item ex15  is an example  which solves in  parallel an operator using  a  finite  difference  scheme.  The  diagonal is  equals  to  4  and  4
+  extra-diagonals  representing the  neighbors in  each directions  is  equal to
+  -1. This  example is used in many  physical phenomena , for  exemple, heat and
+  fluid flow, wave propagation...
+\item ex54 is another example based on 2D problem discretized  with quadrilateral finite elements. For this example, the user can define the scaling of material coefficient in embedded circle, it is called $\alpha$.
+\end{itemize}
+For more technical details on  these applications, interested reader are invited
+to  read the  codes available  in the  PETSc sources.   Those problem  have been
+chosen because they  are scalable with many cores. We  have tested other problem
+but they are not scalable with many cores.
+
+
+
 
 \begin{table*}
 \begin{center}
 \begin{tabular}{|r|r|r|r|r|r|r|r|r|} 
 \hline
 
 
 \begin{table*}
 \begin{center}
 \begin{tabular}{|r|r|r|r|r|r|r|r|r|} 
 \hline
 
-  nb. cores & precond   & \multicolumn{2}{c|}{gmres variant} & \multicolumn{2}{c|}{2 stage CGLS} &  \multicolumn{2}{c|}{2 stage LSQR} & best gain \\ 
+  nb. cores & precond   & \multicolumn{2}{c|}{GMRES} & \multicolumn{2}{c|}{TSARM CGLS} &  \multicolumn{2}{c|}{TSARM LSQR} & best gain \\ 
 \cline{3-8}
              &                       & Time  & \# Iter.  & Time  & \# Iter. & Time  & \# Iter. & \\\hline \hline
   2,048      & mg                    & 403.49   & 18,210    & 73.89  & 3,060   & 77.84  & 3,270  & 5.46 \\
 \cline{3-8}
              &                       & Time  & \# Iter.  & Time  & \# Iter. & Time  & \# Iter. & \\\hline \hline
   2,048      & mg                    & 403.49   & 18,210    & 73.89  & 3,060   & 77.84  & 3,270  & 5.46 \\
@@ -848,7 +861,7 @@ Describe the problems ex15 and ex54
 \begin{tabular}{|r|r|r|r|r|r|r|r|r|} 
 \hline
 
 \begin{tabular}{|r|r|r|r|r|r|r|r|r|} 
 \hline
 
-  nb. cores & threshold   & \multicolumn{2}{c|}{gmres variant} & \multicolumn{2}{c|}{2 stage CGLS} &  \multicolumn{2}{c|}{2 stage LSQR} & best gain \\ 
+  nb. cores & threshold   & \multicolumn{2}{c|}{GMRES} & \multicolumn{2}{c|}{TSARM CGLS} &  \multicolumn{2}{c|}{TSARM LSQR} & best gain \\ 
 \cline{3-8}
              &                       & Time  & \# Iter.  & Time  & \# Iter. & Time  & \# Iter. & \\\hline \hline
   2,048      & 8e-5                  & 108.88 & 16,560  & 23.06  &  3,630  & 22.79  & 3,630   & 4.77 \\
 \cline{3-8}
              &                       & Time  & \# Iter.  & Time  & \# Iter. & Time  & \# Iter. & \\\hline \hline
   2,048      & 8e-5                  & 108.88 & 16,560  & 23.06  &  3,630  & 22.79  & 3,630   & 4.77 \\
@@ -856,7 +869,7 @@ Describe the problems ex15 and ex54
   4,096      & 7e-5                  & 160.59 & 22,530  & 35.15  &  5,130  & 29.21  & 4,350   & 5.49 \\
   4,096      & 6e-5                  & 249.27 & 35,520  & 52.13  &  7,950  & 39.24  & 5,790   & 6.35 \\
   8,192      & 6e-5                  & 149.54 & 17,280  & 28.68  &  3,810  & 29.05  & 3,990  & 5.21 \\
   4,096      & 7e-5                  & 160.59 & 22,530  & 35.15  &  5,130  & 29.21  & 4,350   & 5.49 \\
   4,096      & 6e-5                  & 249.27 & 35,520  & 52.13  &  7,950  & 39.24  & 5,790   & 6.35 \\
   8,192      & 6e-5                  & 149.54 & 17,280  & 28.68  &  3,810  & 29.05  & 3,990  & 5.21 \\
-  8,192      & 5e-5                  & 792.11 & 109,590 & 76.83  &  10,470  & 65.20  & 9,030  & 12.14 \\
+  8,192      & 5e-5                  & 785.04 & 109,590 & 76.07  &  10,470  & 69.42 & 9,030  & 11.30 \\
   16,384     & 4e-5                  & 718.61 & 86,400 & 98.98  &  10,830  & 131.86  & 14,790  & 7.26 \\
 \hline
 
   16,384     & 4e-5                  & 718.61 & 86,400 & 98.98  &  10,830  & 131.86  & 14,790  & 7.26 \\
 \hline
 
@@ -872,17 +885,17 @@ Describe the problems ex15 and ex54
 
 \begin{table*}
 \begin{center}
 
 \begin{table*}
 \begin{center}
-\begin{tabular}{|r|r|r|r|r|r|r|r|} 
+\begin{tabular}{|r|r|r|r|r|r|r|r|r|r|r|
 \hline
 
 \hline
 
-  nb. cores   & \multicolumn{2}{c|}{gmres variant} & \multicolumn{2}{c|}{2 stage CGLS} &  \multicolumn{2}{c|}{2 stage LSQR} & best gain \\ 
-\cline{2-7}
-                    & Time  & \# Iter.  & Time  & \# Iter. & Time  & \# Iter. & \\\hline \hline
-   512              & 3,969.69 & 33,120 & 709.57 & 5,790  & 622.76 & 5,070 &   \\
-   1024             & 1,530.06  & 25,860 & 290.95 & 4,830  & 307.71 & 5,070 &   \\
-   2048             & 919.62    & 31,470 & 237,52 & 8,040  & 194.22 & 6,510 &  \\
-   4096             & 405.60    & 28,380 & 111.67 & 7,590  & 91.72  & 6,510 &   \\
-   8192             & 785.04   & 109,590 & 76.07  & 10,470 & 69,42 & 9,030  & \\
+  nb. cores   & \multicolumn{2}{c|}{GMRES} & \multicolumn{2}{c|}{TSARM CGLS} &  \multicolumn{2}{c|}{TSARM LSQR} & best gain & \multicolumn{3}{c|}{efficiency} \\ 
+\cline{2-7} \cline{9-11}
+                    & Time  & \# Iter.  & Time  & \# Iter. & Time  & \# Iter. &   & GMRES & TS CGLS & TS LSQR\\\hline \hline
+   512              & 3,969.69 & 33,120 & 709.57 & 5,790  & 622.76 & 5,070  & 6.37  &   1    &    1    &     1     \\
+   1024             & 1,530.06  & 25,860 & 290.95 & 4,830  & 307.71 & 5,070 & 5.25  &  1.30  &    1.21  &   1.01     \\
+   2048             & 919.62    & 31,470 & 237.52 & 8,040  & 194.22 & 6,510 & 4.73  & 1.08   &    .75   &   .80\\
+   4096             & 405.60    & 28,380 & 111.67 & 7,590  & 91.72  & 6,510 & 4.42  & 1.22   &  .79     &   .84 \\
+   8192             & 785.04   & 109,590 & 76.07  & 10,470 & 69.42 & 9,030  & 11.30 &   .32  &   .58    &  .56 \\
 
 \hline
 
 
 \hline