]> AND Private Git Repository - GMRES2stage.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
v1-20-08-2014
[GMRES2stage.git] / paper.tex
index 89487b63b81e352ed39b0ae3726c0ef41a5bce73..3b10cc66faa84fafc8d3642729d12b8b51b8b658 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -538,6 +538,13 @@ Iterative Krylov methods; sparse linear systems; error minimization; PETSC; %à
 % no \IEEEPARstart
 % You must have at least 2 lines in the paragraph with the drop letter
 % (should never be an issue)
 % no \IEEEPARstart
 % You must have at least 2 lines in the paragraph with the drop letter
 % (should never be an issue)
+Iterative methods are become more attractive than direct ones to solve large sparse linear systems. They are more effective in a parallel context and require less memory and arithmetic operations than direct methods. A number of iterative methods are proposed and adapted by many researchers and the increased need for solving very large sparse linear systems triggered the development of efficient iterative techniques suitable for the parallel processing.
+
+The most successful iterative methods currently available are those based on the Krylov subspace which consists in forming a basis of a sequence of successive matrix powers times the initial residual. These methods are based on orthogonality of vectors of the Krylov subspace basis to solve generalized linear systems. The most well-known iterative Krylov subspace methods are Conjugate Gradient method and GMRES method (generalized minimal residual).
+
+%les chercheurs ont développer différentes méthodes exemple de méthode iteratives stationnaires et non stationnaires (krylov) 
+%problème de convergence et difficulté dans le passage à l'échelle
+
 %%%*********************************************************
 %%%*********************************************************
 
 %%%*********************************************************
 %%%*********************************************************
 
@@ -557,11 +564,11 @@ Iterative Krylov methods; sparse linear systems; error minimization; PETSC; %à
 \section{A Krylov two-stage algorithm}
 We propose a two-stage algorithm to solve large sparse linear systems of the form $Ax=b$, where $A\in\mathbb{R}^{n\times n}$ is a sparse and square nonsingular matrix, $x\in\mathbb{R}^n$ is the solution vector and $b\in\mathbb{R}^n$ is the right-hand side. The algorithm is implemented as an inner-outer iteration solver based on iterative Krylov methods. The main key points of our solver are given in Algorithm~\ref{algo:01}. 
 
 \section{A Krylov two-stage algorithm}
 We propose a two-stage algorithm to solve large sparse linear systems of the form $Ax=b$, where $A\in\mathbb{R}^{n\times n}$ is a sparse and square nonsingular matrix, $x\in\mathbb{R}^n$ is the solution vector and $b\in\mathbb{R}^n$ is the right-hand side. The algorithm is implemented as an inner-outer iteration solver based on iterative Krylov methods. The main key points of our solver are given in Algorithm~\ref{algo:01}. 
 
-The outer iteration is implemented as an iterative Krylov method which minimizes some error function over a Krylov sub-space~\cite{saad96}. At every iteration, the sparse linear system $Ax=b$ is solved iteratively with an iterative method as GMRES method~\cite{saad86} and the Krylov sub-space that we used is spanned by a basis $S$ composed of successive solutions issued from the inner iteration
+In order to accelerate the convergence, the outer iteration is implemented as an iterative Krylov method which minimizes some error function over a Krylov sub-space~\cite{saad96}. At every iteration, the sparse linear system $Ax=b$ is solved iteratively with an iterative method as GMRES method~\cite{saad86} and the Krylov sub-space that we used is spanned by a basis $S$ composed of successive solutions issued from the inner iteration
 \begin{equation}
   S = \{x^1, x^2, \ldots, x^s\} \text{,~} s\leq n.
 \end{equation} 
 \begin{equation}
   S = \{x^1, x^2, \ldots, x^s\} \text{,~} s\leq n.
 \end{equation} 
-The advantage of such a Krylov sub-space is that we neither need an orthogonal basis nor any synchronization between processors to generate this basis. The algorithm is periodically restarted every $s$ iterations with a new initial guess $x=S\alpha$ which minimizes the residual norm $\|b-Ax\|_2$ over the Krylov sub-space spanned by vectors of $S$, where $\alpha$ is a solution of the normal equations
+The advantage of such a Krylov subspace is that we neither need an orthogonal basis nor any synchronization between processors to generate this basis. The algorithm is periodically restarted every $s$ iterations with a new initial guess $x=S\alpha$ which minimizes the residual norm $\|b-Ax\|_2$ over the Krylov subspace spanned by vectors of $S$, where $\alpha$ is a solution of the normal equations
 \begin{equation}
   R^TR\alpha = R^Tb,
 \end{equation}
 \begin{equation}
   R^TR\alpha = R^Tb,
 \end{equation}
@@ -570,7 +577,7 @@ which is associated with the least-squares problem
    \underset{\alpha\in\mathbb{R}^{s}}{min}\|b-R\alpha\|_2
 \label{eq:01}
 \end{equation}
    \underset{\alpha\in\mathbb{R}^{s}}{min}\|b-R\alpha\|_2
 \label{eq:01}
 \end{equation}
-such that $R=AS$ is a dense rectangular matrix in $\mathbb{R}^{n\times s}$, $s\ll n$, and $R^T$ denotes the transpose of matrix $R$. We use an iterative method to solve the least-squares problem~(\ref{eq:01}) as CGLS~\cite{hestenes52} or LSQR~\cite{paige82} which is more appropriate that a direct method in the parallel context.
+such that $R=AS$ is a dense rectangular matrix in $\mathbb{R}^{n\times s}$, $s\ll n$, and $R^T$ denotes the transpose of matrix $R$. We use an iterative method to solve the least-squares problem~(\ref{eq:01}) as CGLS~\cite{hestenes52} or LSQR~\cite{paige82} methods which is more appropriate than a direct method in the parallel context.
 
 \begin{algorithm}[t]
 \caption{A Krylov two-stage algorithm}
 
 \begin{algorithm}[t]
 \caption{A Krylov two-stage algorithm}
@@ -580,12 +587,12 @@ such that $R=AS$ is a dense rectangular matrix in $\mathbb{R}^{n\times s}$, $s\l
   \State Set the initial guess $x^0$
   \For {$k=1,2,3,\ldots$ until convergence}
     \State Solve iteratively $Ax^k=b$
   \State Set the initial guess $x^0$
   \For {$k=1,2,3,\ldots$ until convergence}
     \State Solve iteratively $Ax^k=b$
-    \State Add vector $x^k$ to Krylov basis $S$
+    \State Add vector $x^k$ to Krylov subspace basis $S$
     \If {$k$ mod $s=0$ {\bf and} not convergence}
       \State Compute dense matrix $R=AS$
       \State Solve least-squares problem $\underset{\alpha\in\mathbb{R}^{s}}{min}\|b-R\alpha\|_2$
       \State Compute minimizer $x^k=S\alpha$
     \If {$k$ mod $s=0$ {\bf and} not convergence}
       \State Compute dense matrix $R=AS$
       \State Solve least-squares problem $\underset{\alpha\in\mathbb{R}^{s}}{min}\|b-R\alpha\|_2$
       \State Compute minimizer $x^k=S\alpha$
-      \State Reinitialize Krylov basis $S$
+      \State Reinitialize Krylov subspace basis $S$
     \EndIf
   \EndFor
 \end{algorithmic}
     \EndIf
   \EndFor
 \end{algorithmic}
@@ -653,7 +660,7 @@ such that $R=AS$ is a dense rectangular matrix in $\mathbb{R}^{n\times s}$, $s\l
 
 \bibitem{saad86} Y.~Saad and M.~H.~Schultz, \emph{GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems}, SIAM Journal on Scientific and Statistical Computing, 7(3):856--869, 1986.
 
 
 \bibitem{saad86} Y.~Saad and M.~H.~Schultz, \emph{GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems}, SIAM Journal on Scientific and Statistical Computing, 7(3):856--869, 1986.
 
-\bibitem{saad96} Y.~Saad and M.~H.~Schultz, \emph{Iterative Methods for Sparse Linear Systems}, PWS Publishing, New York, 1996.
+\bibitem{saad96} Y.~Saad, \emph{Iterative Methods for Sparse Linear Systems}, PWS Publishing, New York, 1996.
 
 \bibitem{hestenes52} M.~R.~Hestenes and E.~Stiefel, \emph{Methods of conjugate gradients for solving linear system}, Journal of Research of National Bureau of Standards, B49:409--436, 1952.
 
 
 \bibitem{hestenes52} M.~R.~Hestenes and E.~Stiefel, \emph{Methods of conjugate gradients for solving linear system}, Journal of Research of National Bureau of Standards, B49:409--436, 1952.