]> AND Private Git Repository - GMRES2stage.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Relecture
[GMRES2stage.git] / paper.tex
index d9880d1683c4f4bddad5319fef970a3411ce330c..a4545fd4733e8da1759f78dd354195c238bf34c7 100644 (file)
--- a/paper.tex
+++ b/paper.tex
 % affiliations
 
 \author{\IEEEauthorblockN{Rapha\"el Couturier\IEEEauthorrefmark{1}, Lilia Ziane Khodja\IEEEauthorrefmark{2}, and Christophe Guyeux\IEEEauthorrefmark{1}}
-\IEEEauthorblockA{\IEEEauthorrefmark{1} Femto-ST Institute, University of Franche Comte, France\\
+\IEEEauthorblockA{\IEEEauthorrefmark{1} Femto-ST Institute, University of Franche-Comt\'e, France\\
 Email: \{raphael.couturier,christophe.guyeux\}@univ-fcomte.fr}
 \IEEEauthorblockA{\IEEEauthorrefmark{2} INRIA Bordeaux Sud-Ouest, France\\
 Email: lilia.ziane@inria.fr}
@@ -564,7 +564,7 @@ gradient and GMRES ones (Generalized Minimal RESidual).
 
 However,  iterative  methods suffer  from scalability  problems  on parallel
 computing  platforms  with many  processors, due  to  their need  of  reduction
-operations, and to  collective    communications   to  achive   matrix-vector
+operations, and to  collective    communications   to  achieve   matrix-vector
 multiplications. The  communications on large  clusters with thousands  of cores
 and  large  sizes of  messages  can  significantly  affect the  performances  of these
 iterative methods. As a consequence, Krylov subspace iteration methods are often used
@@ -621,19 +621,20 @@ outer solver periodically applies a least-squares minimization  on the residuals
 At each outer iteration, the sparse linear system $Ax=b$ is partially 
 solved using only $m$
 iterations of an iterative method, this latter being initialized with the 
-best known approximation previously obtained. 
-GMRES method~\cite{Saad86}, or any of its variants, can be used for instance as an
-inner solver. The current approximation of the Krylov method is then stored inside a matrix
-$S$ composed by the successive solutions that are computed during inner iterations.
+last obtained approximation. 
+GMRES method~\cite{Saad86}, or any of its variants, can potentially be used as
+inner solver. The current approximation of the Krylov method is then stored inside a $n \times s$ matrix
+$S$, which is composed by the $s$ last solutions that have been computed during 
+the inner iterations phase.
 
-At each $s$ iterations, the minimization step is applied in order to
+At each $s$ iterations, another kind of minimization step is applied in order to
 compute a new  solution $x$. For that, the previous  residuals of $Ax=b$ are computed by
 the inner iterations with $(b-AS)$. The minimization of the residuals is obtained by  
 \begin{equation}
    \underset{\alpha\in\mathbb{R}^{s}}{min}\|b-R\alpha\|_2
 \label{eq:01}
 \end{equation}
-with $R=AS$. Then the new solution $x$ is computed with $x=S\alpha$.
+with $R=AS$. The new solution $x$ is then computed with $x=S\alpha$.
 
 
 In  practice, $R$  is a  dense rectangular  matrix belonging in  $\mathbb{R}^{n\times s}$,
@@ -663,8 +664,8 @@ appropriate than a single direct method in a parallel context.
 \label{algo:01}
 \end{algorithm}
 
-Algorithm~\ref{algo:01}  summarizes  the principle  of  our  method.  The  outer
-iteration is  inside the for  loop. Line~\ref{algo:solve}, the Krylov  method is
+Algorithm~\ref{algo:01}  summarizes  the principle  of  the proposed  method.  The  outer
+iteration is  inside the \emph{for}  loop. Line~\ref{algo:solve}, the Krylov  method is
 called for a  maximum of $max\_iter_{kryl}$ iterations.  In practice, we  suggest to set this parameter
 equals to  the restart  number of the  GMRES-like method. Moreover,  a tolerance
 threshold must be specified for the  solver. In practice, this threshold must be
@@ -742,44 +743,48 @@ Suppose that $A$ is a positive real matrix with symmetric part $M$. Then the res
 \begin{equation}
 ||r_m|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{m}{2}} ||r_0|| ,
 \end{equation}
-where $\alpha = \lambda_min(M)^2$ and $\beta = \lambda_max(A^T A)$, which proves 
+where $\alpha = \lambda_{min}(M)^2$ and $\beta = \lambda_{max}(A^T A)$, which proves 
 the convergence of GMRES($m$) for all $m$ under that assumption regarding $A$.
 \end{proposition}
 
 
 We can now claim that,
 \begin{proposition}
-If $A$ is a positive real matrix and GMRES($m$) is used as solver, then the TSIRM algorithm is convergent. Furthermore, we still have 
+If $A$ is a positive real matrix and GMRES($m$) is used as solver, then the TSIRM algorithm is convergent. Furthermore, 
+let $r_k$ be the
+$k$-th residue of TSIRM, then
+we still have:
 \begin{equation}
-||r_m|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{m}{2}} ||r_0|| ,
+||r_k|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{km}{2}} ||r_0|| ,
 \end{equation}
 where $\alpha$ and $\beta$ are defined as in Proposition~\ref{prop:saad}.
 \end{proposition}
 
 \begin{proof}
-Let $r_k = b-Ax_k$, where $x_k$ is the approximation of the solution after the
-$k$-th iterate of TSIRM.
 We will prove by a mathematical induction that, for each $k \in \mathbb{N}^\ast$, 
-$||r_m|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{m}{2}} ||r_0||.$
+$||r_k|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{mk}{2}} ||r_0||.$
 
 The base case is obvious, as for $k=1$, the TSIRM algorithm simply consists in applying GMRES($m$) once, leading to a new residual $r_1$ which follows the inductive hypothesis due to Proposition~\ref{prop:saad}.
 
-Suppose now that the claim holds for all $m=1, 2, \hdots, k-1$, that is, $\forall m \in \{1,2,\hdots, k-1\}$, $||r_m|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{m}{2}} ||r_0||$.
+Suppose now that the claim holds for all $m=1, 2, \hdots, k-1$, that is, $\forall m \in \{1,2,\hdots, k-1\}$, $||r_m|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{km}{2}} ||r_0||$.
 We will show that the statement holds too for $r_k$. Two situations can occur:
 \begin{itemize}
-\item If $k \mod m \neq 0$, then
-
-\item Else, let $\operatorname{span}(S) = \left \{ {\sum_{i=1}^k \lambda_i v_i \Big| k \in \mathbb{N}, v_i \in S, \lambda _i \in \mathbb{R}} \right \}$ be the linear span of a set of real vectors $S$. So,\\
+\item If $k \mod m \neq 0$, then the TSIRM algorithm consists in executing GMRES once. In that case, we obtain $||r_k|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{m}{2}} ||r_{k-1}||\leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{km}{2}} ||r_0||$ by the inductive hypothesis.
+\item Else, the TSIRM algorithm consists in two stages: a first GMRES($m$) execution leads to a temporary $x_k$ whose residue satisfies $||r_k|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{m}{2}} ||r_{k-1}||\leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{km}{2}} ||r_0||$, and a least squares resolution.
+Let $\operatorname{span}(S) = \left \{ {\sum_{i=1}^k \lambda_i v_i \Big| k \in \mathbb{N}, v_i \in S, \lambda _i \in \mathbb{R}} \right \}$ be the linear span of a set of real vectors $S$. So,\\
 $\min_{\alpha \in \mathbb{R}^s} ||b-R\alpha ||_2 = \min_{\alpha \in \mathbb{R}^s} ||b-AS\alpha ||_2$
 
 $\begin{array}{ll}
-& = \min_{x \in span\left(S_{k-s}, S_{k-s+1}, \hdots, S_{k-1} \right)} ||b-AS\alpha ||_2\\
-& = \min_{x \in span\left(x_{k-s}, x_{k-s}+1, \hdots, x_{k-1} \right)} ||b-AS\alpha ||_2\\
-& \leqslant \min_{x \in span\left( x_{k-1} \right)} ||b-Ax ||_2\\
-& \leqslant \min_{\lambda \in \mathbb{R}} ||b-\lambda Ax_{k-1} ||_2\\
-& \leqslant ||b-Ax_{k-1}||_2 .
+& = \min_{x \in span\left(S_{k-s+1}, S_{k-s+2}, \hdots, S_{k} \right)} ||b-AS\alpha ||_2\\
+& = \min_{x \in span\left(x_{k-s+1}, x_{k-s}+2, \hdots, x_{k} \right)} ||b-AS\alpha ||_2\\
+& \leqslant \min_{x \in span\left( x_{k} \right)} ||b-Ax ||_2\\
+& \leqslant \min_{\lambda \in \mathbb{R}} ||b-\lambda Ax_{k} ||_2\\
+& \leqslant ||b-Ax_{k}||_2\\
+& = ||r_k||_2\\
+& \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{km}{2}} ||r_0||,
 \end{array}$
 \end{itemize}
+which concludes the induction and the proof.
 \end{proof}
 
 We can remark that, at each iterate, the residue of the TSIRM algorithm is lower 
@@ -1025,13 +1030,22 @@ In Table~\ref{tab:04}, some experiments with example ex54 on the Curie architect
 %%%*********************************************************
 %%%*********************************************************
 
-
-future plan : \\
-- study other kinds of matrices, problems, inner solvers\\
-- test the influence of all parameters\\
-- adaptative number of outer iterations to minimize\\
-- other methods to minimize the residuals?\\
-- implement our solver inside PETSc
+A novel two-stage iterative  algorithm has been proposed in this article,
+in order to accelerate the convergence Krylov iterative  methods.
+Our TSIRM proposal acts as a merger between Krylov based solvers and
+a least-squares minimization step.
+The convergence of the method has been proven in some situations, while 
+experiments up to 16,394 cores have been led to verify that TSIRM runs
+5 or  7 times  faster than GMRES.
+
+
+For future work, the authors' intention is to investigate 
+other kinds of matrices, problems, and inner solvers. The 
+influence of all parameters must be tested too, while 
+other methods to minimize the residuals must be regarded.
+The number of outer iterations to minimize should become 
+adaptative to improve the overall performances of the proposal.
+Finally, this solver will be implemented inside PETSc.
 
 
 % conference papers do not normally have an appendix