+We can now claim that,
+\begin{proposition}
+If $A$ is a positive real matrix and GMRES($m$) is used as solver, then the TSIRM algorithm is convergent.
+\end{proposition}
+
+\begin{proof}
+Let $r_k = b-Ax_k$, where $x_k$ is the approximation of the solution after the
+$k$-th iterate of TSIRM.
+We will prove that $r_k \rightarrow 0$ when $k \rightarrow +\infty$.
+
+Each step of the TSIRM algorithm \\
+$\min_{\alpha \in \mathbb{R}^s} ||b-R\alpha ||_2 = \min_{\alpha \in \mathbb{R}^s} ||b-AS\alpha ||_2$
+
+$\begin{array}{ll}
+& = \min_{x \in Vect\left(x_0, x_1, \hdots, x_{k-1} \right)} ||b-AS\alpha ||_2\\
+& \leqslant \min_{x \in Vect\left( S_{k-1} \right)} ||b-Ax ||_2\\
+& \leqslant ||b-Ax_{k-1}||
+\end{array}$
+\end{proof}
+