+Table~\ref{tab:03} shows the execution times and the number of iterations of
+example ex15 of PETSc on the Juqueen architecture. Different numbers of cores
+are studied ranging from 2,048 up-to 16,383. Two preconditioners have been
+tested: {\it mg} and {\it sor}. For those experiments, the number of components (or unknowns of the
+problems) per processor is fixed to 25,000, also called weak scaling. This
+number can seem relatively small. In fact, for some applications that need a lot
+of memory, the number of components per processor requires sometimes to be
+small.
+
+
+
+In Table~\ref{tab:03}, we can notice that TSIRM is always faster than FGMRES. The last
+column shows the ratio between FGMRES and the best version of TSIRM according to
+the minimization procedure: CGLS or LSQR. Even if we have computed the worst
+case between CGLS and LSQR, it is clear that TSIRM is always faster than
+FGMRES. For this example, the multigrid preconditioner is faster than SOR. The
+gain between TSIRM and FGMRES is more or less similar for the two
+preconditioners. Looking at the number of iterations to reach the convergence,
+it is obvious that TSIRM allows the reduction of the number of iterations. It
+should be noticed that for TSIRM, in those experiments, only the iterations of
+the Krylov solver are taken into account. Iterations of CGLS or LSQR were not
+recorded but they are time-consuming. In general each $max\_iter_{kryl}*s$ which
+corresponds to 30*12, there are $max\_iter_{ls}$ which corresponds to 15.
+
+\begin{figure}[htbp]
+\centering
+ \includegraphics[width=0.45\textwidth]{nb_iter_sec_ex15_juqueen}
+\caption{Number of iterations per second with ex15 and the same parameters than in Table~\ref{tab:03} (weak scaling)}
+\label{fig:01}
+\end{figure}
+
+
+In Figure~\ref{fig:01}, the number of iterations per second corresponding to
+Table~\ref{tab:01} is displayed. It can be noticed that the number of
+iterations per second of FMGRES is constant whereas it decreases with TSIRM with
+both preconditioners. This can be explained by the fact that when the number of
+cores increases the time for the least-squares minimization step also increases but, generally,
+when the number of cores increases, the number of iterations to reach the
+threshold also increases, and, in that case, TSIRM is more efficient to reduce
+the number of iterations. So, the overall benefit of using TSIRM is interesting.
+
+
+
+