]> AND Private Git Repository - GMRES2stage.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
update
[GMRES2stage.git] / paper.tex
index 74158d2c5b5c80e6d49e63afbd368162d22e8428..2d34b8f9777a4f3d1ffe72795a514830c3f45456 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -601,13 +601,36 @@ is summarized while intended perspectives are provided.
 %%%*********************************************************
 \section{Related works}
 \label{sec:02} 
-Krylov subspace iteration methods have increasingly become useful and successful techniques for solving linear and nonlinear systems and eigenvalue problems, especially since the increase development of the preconditioners~\cite{Saad2003,Meijerink77}. One reason of the popularity of these methods is their generality, simplicity and efficiency to solve systems of equations arising from very large and complex problems. %A Krylov method is based on a projection process onto a Krylov subspace spanned by vectors and it forms a sequence of approximations by minimizing the residual over the subspace formed~\cite{}.
-
-GMRES is one of the most widely used Krylov iterative method for solving sparse and large linear systems. It is developed by Saad and al.~\cite{Saad86} as a generalized method to deal with unsymmetric and non-Hermitian problems, and indefinite symmetric problems too. In its original version called full GMRES, it minimizes the residual over the current Krylov subspace until convergence in at most $n$ iterations, where $n$ is the size of the sparse matrix. It should be noted that full GMRES is too expensive in the case of large matrices since the required orthogonalization process per iteration grows quadratically with the number of iterations. For that reason, in practice GMRES is restarted after each $m\ll n$ iterations to avoid the storage of a large orthonormal basis. However, the convergence behavior of the restarted GMRES, called GMRES($m$), in many cases depends quite critically on the value of $m$~\cite{Huang89}. Therefore in most cases, a preconditioning technique is applied to the restarted GMRES method in order to improve its convergence.
-
-In order to enhance the robustness of Krylov iterative solvers, some techniques have been proposed allowing the use of different preconditioners, if necessary, within the iteration instead of restarting. Those techniques may lead to considerable savings in CPU time and memory requirements. Van der Vorst in~\cite{Vorst94} has proposed variants of the GMRES algorithm in which a different preconditioner is applied in each iteration, so-called GMRESR family of nested methods. In fact, the GMRES method is effectively preconditioned with other iterative schemes (or GMRES itself), where the iterations of the GMRES method are called outer iterations while the iterations of the preconditioning process referred to as inner iterations. Saad in~\cite{Saad:1993} has proposed FGMRES which is another variant of the GMRES algorithm using a variable preconditioner. In FGMRES the search directions are preconditioned whereas in GMRESR the residuals are preconditioned. However in practice the good preconditioners are based on direct methods, as ILU preconditioners, which are not easy to parallelize and suffer from the scalability problems on large clusters of thousands of cores.      
-
-% two-stage, communication avoiding 
+Krylov subspace iteration methods have increasingly become useful and successful
+techniques  for  solving  linear,  nonlinear systems  and  eigenvalue  problems,
+especially      since       the      increase      development       of      the
+preconditioners~\cite{Saad2003,Meijerink77}.  One reason  of  the popularity  of
+these methods is their generality, simplicity and efficiency to solve systems of
+equations arising from very large and complex problems.
+
+GMRES is one of the most  widely used Krylov iterative method for solving sparse
+and large  linear systems. It  is developed by  Saad and al.~\cite{Saad86}  as a
+generalized  method to  deal with  unsymmetric and  non-Hermitian  problems, and
+indefinite symmetric problems too. In its original version called full GMRES, it
+minimizes the residual over the  current Krylov subspace until convergence in at
+most $n$ iterations,  where $n$ is the  size of the sparse matrix.  It should be
+noticed that full GMRES is too expensive in the case of large matrices since the
+required orthogonalization  process per  iteration grows quadratically  with the
+number of iterations. For that reason, in practice GMRES is restarted after each
+$m\ll n$ iterations to avoid the  storage of a large orthonormal basis. However,
+the  convergence behavior  of the  restarted GMRES,  called GMRES($m$),  in many
+cases depends quite critically on  the value of $m$~\cite{Huang89}. Therefore in
+most cases, a preconditioning technique is applied to the restarted GMRES method
+in order to improve its convergence.
+
+In order to enhance the robustness of Krylov iterative solvers, some techniques have been proposed allowing the use of different preconditioners, if necessary, within the iteration instead of restarting. Those techniques may lead to considerable savings in CPU time and memory requirements. Van der Vorst in~\cite{Vorst94} has proposed variants of the GMRES algorithm in which a different preconditioner is applied in each iteration, so-called GMRESR family of nested methods. In fact, the GMRES method is effectively preconditioned with other iterative schemes (or GMRES itself), where the iterations of the GMRES method are called outer iterations while the iterations of the preconditioning process referred to as inner iterations. Saad in~\cite{Saad:1993} has proposed FGMRES which is another variant of the GMRES algorithm using a variable preconditioner. In FGMRES the search directions are preconditioned whereas in GMRESR the residuals are preconditioned. However in practice the good preconditioners are those based on direct methods, as ILU preconditioners, which are not easy to parallelize and suffer from the scalability problems on large clusters of thousands of cores.  
+
+Recently, communication-avoiding methods have been developed to reduce the communication overheads in Krylov subspace iterative solvers. On modern computer architectures, communications between processors are much slower than floating-point arithmetic operations on a given processor. Communication-avoiding techniques reduce either communications between processors or data movements between levels of the memory hierarchy, by reformulating the communication-bound kernels (more frequently SpMV kernels) and the orthogonalization operations within the Krylov iterative solver. Different works have studied the communication-avoiding techniques for the GMRES method, so-called CA-GMRES, on multicore processors and multi-GPU machines~\cite{Mohiyuddin2009,Hoemmen2010,Yamazaki2014}. 
+
+Compared  to all these  works and  to all  the other  works on  Krylov iterative
+method, the originality of our work is to build a second iteration over a Krylov
+iterative method and to minimize the residuals with a least-squares method after
+a given number of outer iterations.
 
 %%%*********************************************************
 %%%*********************************************************
@@ -616,7 +639,7 @@ In order to enhance the robustness of Krylov iterative solvers, some techniques
 
 %%%*********************************************************
 %%%*********************************************************
-\section{Two-stage iteration with least-squares residuals minimization algorithm}
+\section{TSIRM: Two-stage iteration with least-squares residuals minimization algorithm}
 \label{sec:03}
 A two-stage algorithm is proposed  to solve large  sparse linear systems  of the
 form  $Ax=b$,  where  $A\in\mathbb{R}^{n\times   n}$  is  a  sparse  and  square
@@ -680,16 +703,16 @@ method is called  for a maximum of $max\_iter_{kryl}$  iterations.  In practice,
 we suggest to  set this parameter equal to the restart  number in the GMRES-like
 method. Moreover,  a tolerance  threshold must be  specified for the  solver. In
 practice, this threshold must be  much smaller than the convergence threshold of
-the  TSIRM algorithm  (\emph{i.e.}, $\epsilon_{tsirm}$).  We also  consider that
-after the call of the $Solve$ function, we obtain the vector $x_k$ and the error
-which is defined by $||Ax_k-b||_2$.
+the TSIRM  algorithm (\emph{i.e.},  $\epsilon_{tsirm}$).  We also  consider that
+after  the call of  the $Solve$  function, we  obtain the  vector $x_k$  and the
+$error$ which is defined by $||Ax_k-b||_2$.
 
-  Line~\ref{algo:store},
-$S_{k \mod  s}=x_k$ consists in  copying the solution  $x_k$ into the  column $k
-\mod s$ of $S$.   After the minimization, the matrix $S$ is  reused with the new
-values of the residuals.  To solve the minimization problem, an iterative method
-is used. Two parameters are required  for that: the maximum number of iterations
-and the threshold to stop the method.
+  Line~\ref{algo:store},  $S_{k \mod  s}=x_k$ consists  in copying  the solution
+  $x_k$ into the  column $k \mod s$ of $S$.  After  the minimization, the matrix
+  $S$ is reused with the new values of the residuals.  To solve the minimization
+  problem, an  iterative method is used.  Two parameters are  required for that:
+  the maximum number of iterations  ($max\_iter_{ls}$) and the threshold to stop
+  the method ($\epsilon_{ls}$).
 
 Let us summarize the most important parameters of TSIRM:
 \begin{itemize}
@@ -710,8 +733,9 @@ efficient since the  matrix $A$ is sparse and since the  matrix $S$ contains few
 columns in  practice. As explained  previously, at least  two methods seem  to be
 interesting to solve the least-squares minimization, CGLS and LSQR.
 
-In the following  we remind the CGLS algorithm. The LSQR  method follows more or
-less the same principle but it takes more place, so we briefly explain the parallelization of CGLS which is similar to LSQR.
+In Algorithm~\ref{algo:02} we remind the CGLS algorithm. The LSQR method follows
+more or less the  same principle but it takes more place,  so we briefly explain
+the parallelization of CGLS which is  similar to LSQR.
 
 \begin{algorithm}[t]
 \caption{CGLS}
@@ -740,9 +764,10 @@ less the same principle but it takes more place, so we briefly explain the paral
 
 
 In each iteration  of CGLS, there is two  matrix-vector multiplications and some
-classical operations:  dot product, norm, multiplication  and addition on  vectors. All
-these operations are easy to implement in PETSc or similar environment.
-
+classical  operations:  dot  product,   norm,  multiplication  and  addition  on
+vectors.  All  these  operations are  easy  to  implement  in PETSc  or  similar
+environment.  It should be noticed that LSQR follows the same principle, it is a
+little bit longer but it performs more or less the same operations.
 
 
 %%%*********************************************************
@@ -830,12 +855,12 @@ which concludes the induction and the proof.
 \label{sec:05}
 
 
-In order to see the behavior of the proposal when considering only one processor, a first
-comparison with GMRES or FGMRES and the new algorithm detailed previously has been experimented. 
-Matrices that have been used with their characteristics (names, fields, rows, and nonzero coefficients) are detailed in 
-Table~\ref{tab:01}.  These latter, which are real-world applications matrices, 
-have been extracted 
- from   the  Davis  collection,   University  of
+In order to see the behavior of our approach when considering only one processor,
+a  first  comparison  with  GMRES  or  FGMRES and  the  new  algorithm  detailed
+previously  has been  experimented.  Matrices  that  have been  used with  their
+characteristics (names, fields, rows,  and nonzero coefficients) are detailed in
+Table~\ref{tab:01}.  These  latter, which are  real-world applications matrices,
+have    been   extracted    from   the    Davis   collection,    University   of
 Florida~\cite{Dav97}.
 
 \begin{table}[htbp]
@@ -856,28 +881,25 @@ torso3             & 2D/3D problem & 259,156 & 4,429,042 \\
 \label{tab:01}
 \end{center}
 \end{table}
-Chosen parameters are detailed below.
-%The following  parameters have been chosen  for our experiments.   
-As by default
-the restart  of GMRES is performed every  30 iterations, we have  chosen to stop
-the GMRES every 30 iterations (\emph{i.e.} $max\_iter_{kryl}=30$).  $s$ is set to 8. CGLS is
-chosen  to minimize  the least-squares  problem with  the  following parameters:
+Chosen parameters  are detailed below.   As by default  the restart of  GMRES is
+performed  every 30  iterations,  we have  chosen  to stop  the  GMRES every  30
+iterations (\emph{i.e.} $max\_iter_{kryl}=30$).  $s$ is set to 8. CGLS is chosen
+to   minimize  the   least-squares  problem   with  the   following  parameters:
 $\epsilon_{ls}=1e-40$ and $max\_iter_{ls}=20$.  The external precision is set to
 $\epsilon_{tsirm}=1e-10$.  Those  experiments have been performed  on a Intel(R)
 Core(TM) i7-3630QM CPU @ 2.40GHz with the version 3.5.1 of PETSc.
 
 
 In  Table~\ref{tab:02}, some  experiments comparing  the solving  of  the linear
-systems obtained with the previous matrices  with a GMRES variant and with out 2
-stage algorithm are  given. In the second column, it can  be noticed that either
-GRMES or  FGMRES (Flexible  GMRES)~\cite{Saad:1993} is used  to solve  the linear
-system.   According to  the matrices,  different preconditioner  is  used.  With
-TSIRM, the same solver and the  same preconditionner are used.  This Table shows
-that  TSIRM  can  drastically reduce  the  number  of  iterations to  reach  the
-convergence when the  number of iterations for the normal GMRES  is more or less
-greater than  500. In fact  this also depends  on tow parameters: the  number of
-iterations  to  stop  GMRES  and   the  number  of  iterations  to  perform  the
-minimization.
+systems obtained with the previous matrices  with a GMRES variant and with TSIRM
+are given. In the  second column, it can be noticed that  either GMRES or FGMRES
+(Flexible GMRES)~\cite{Saad:1993} is used to solve the linear system.  According
+to  the matrices,  different preconditioners  are  used.  With  TSIRM, the  same
+solver and the  same preconditionner are used.  This Table  shows that TSIRM can
+drastically reduce  the number of iterations  to reach the  convergence when the
+number of iterations for  the normal GMRES is more or less  greater than 500. In
+fact this also depends on two parameters: the number of iterations to stop GMRES
+and the number of iterations to perform the minimization.
 
 
 \begin{table}[htbp]
@@ -908,8 +930,8 @@ torso3             & fgmres / sor  & 37.70 & 565 & 34.97 & 510 \\
 
 
 In order to perform larger experiments, we have tested some example applications
-of PETSc. Those  applications are available in the ksp part  which is suited for
-scalable linear equations solvers:
+of  PETSc. Those  applications are  available in  the \emph{ksp}  part  which is
+suited for scalable linear equations solvers:
 \begin{itemize}
 \item ex15  is an example  which solves in  parallel an operator using  a finite
   difference  scheme.   The  diagonal  is  equal to  4  and  4  extra-diagonals
@@ -922,8 +944,7 @@ scalable linear equations solvers:
 \end{itemize}
 For more technical details on these applications, interested readers are invited
 to read  the codes  available in  the PETSc sources.   Those problems  have been
-chosen because they are scalable with many  cores which is not the case of other
-problems that we have tested.
+chosen because they are scalable with many  cores.
 
 In  the  following   larger  experiments  are  described  on   two  large  scale
 architectures:  Curie and  Juqeen.  Both  these architectures  are supercomputer
@@ -968,7 +989,7 @@ preconditioner in PETSc please consult~\cite{petsc-web-page}.
 \hline
 
 \end{tabular}
-\caption{Comparison of FGMRES and TSIRM with FGMRES for example ex15 of PETSc with two preconditioners (mg and sor) with 25,000 components per core on Juqueen (threshold 1e-3, restart=30, s=12),  time is expressed in seconds.}
+\caption{Comparison of FGMRES and TSIRM with FGMRES for example ex15 of PETSc with two preconditioners (mg and sor) with 25,000 components per core on Juqueen ($\epsilon_{tsirm}=1e-3$, $max\_iter_{kryl}=30$, $s=12$, $max\_iter_{ls}=15$, $\epsilon_{ls}=1e-40$),  time is expressed in seconds.}
 \label{tab:03}
 \end{center}
 \end{table*}
@@ -1023,7 +1044,7 @@ the number of iterations. So, the overall benefit of using TSIRM is interesting.
 \begin{tabular}{|r|r|r|r|r|r|r|r|r|} 
 \hline
 
-  nb. cores & threshold   & \multicolumn{2}{c|}{FGMRES} & \multicolumn{2}{c|}{TSIRM CGLS} &  \multicolumn{2}{c|}{TSIRM LSQR} & best gain \\ 
+  nb. cores & $\epsilon_{tsirm}$  & \multicolumn{2}{c|}{FGMRES} & \multicolumn{2}{c|}{TSIRM CGLS} &  \multicolumn{2}{c|}{TSIRM LSQR} & best gain \\ 
 \cline{3-8}
              &                       & Time  & \# Iter.  & Time  & \# Iter. & Time  & \# Iter. & \\\hline \hline
   2,048      & 8e-5                  & 108.88 & 16,560  & 23.06  &  3,630  & 22.79  & 3,630   & 4.77 \\
@@ -1036,7 +1057,7 @@ the number of iterations. So, the overall benefit of using TSIRM is interesting.
 \hline
 
 \end{tabular}
-\caption{Comparison of FGMRES  and TSIRM with FGMRES algorithms for ex54 of Petsc (both with the MG preconditioner) with 25,000 components per core on Curie (restart=30, s=12),  time is expressed in seconds.}
+\caption{Comparison of FGMRES  and TSIRM with FGMRES algorithms for ex54 of Petsc (both with the MG preconditioner) with 25,000 components per core on Curie ($max\_iter_{kryl}=30$, $s=12$, $max\_iter_{ls}=15$, $\epsilon_{ls}=1e-40$),  time is expressed in seconds.}
 \label{tab:04}
 \end{center}
 \end{table*}
@@ -1094,7 +1115,7 @@ taken into account with TSIRM.
 \hline
 
 \end{tabular}
-\caption{Comparison of FGMRES  and TSIRM with FGMRES for ex54 of Petsc (both with the MG preconditioner) with 204,919,225 components on Curie with different number of cores (restart=30, s=12, threshold 5e-5),  time is expressed in seconds.}
+\caption{Comparison of FGMRES  and TSIRM with FGMRES for ex54 of Petsc (both with the MG preconditioner) with 204,919,225 components on Curie with different number of cores ($\epsilon_{tsirm}=5e-5$, $max\_iter_{kryl}=30$, $s=12$, $max\_iter_{ls}=15$, $\epsilon_{ls}=1e-40$),  time is expressed in seconds.}
 \label{tab:05}
 \end{center}
 \end{table*}