]> AND Private Git Repository - GMRES2stage.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
suite
[GMRES2stage.git] / paper.tex
index ef0321c2b6b809d4b0b8f5d8e50b45e918989ce5..f4dba976679275da150445d517e24ea7004d578a 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -823,13 +823,13 @@ which concludes the induction and the proof.
 \label{sec:05}
 
 
-In order to see the influence of our algorithm with only one processor, we first
-show a comparison with GMRES or FGMRES and our algorithm. In Table~\ref{tab:01},
-we  show the  matrices we  have  used and  some of  them characteristics.  Those
-matrices  are   chosen  from   the  Davis  collection   of  the   University  of
-Florida~\cite{Dav97}. They are matrices arising in real-world applications.  For
-all the  matrices, the name,  the field,  the number of  rows and the  number of
-nonzero elements are given.
+In order to see the behavior of the proposal when considering only one processor, a first
+comparison with GMRES or FGMRES and the new algorithm detailed previously has been experimented. 
+Matrices that have been used with their characteristics (names, fields, rows, and nonzero coefficients) are detailed in 
+Table~\ref{tab:01}.  These latter, which are real-world applications matrices, 
+have been extracted 
+ from   the  Davis  collection,   University  of
+Florida~\cite{Dav97}.
 
 \begin{table}[htbp]
 \begin{center}
@@ -849,8 +849,9 @@ torso3             & 2D/3D problem & 259,156 & 4,429,042 \\
 \label{tab:01}
 \end{center}
 \end{table}
-
-The following  parameters have been chosen  for our experiments.   As by default
+Chosen parameters are detailed below.
+%The following  parameters have been chosen  for our experiments.   
+As by default
 the restart  of GMRES is performed every  30 iterations, we have  chosen to stop
 the GMRES every 30 iterations (\emph{i.e.} $max\_iter_{kryl}=30$).  $s$ is set to 8. CGLS is
 chosen  to minimize  the least-squares  problem with  the  following parameters:
@@ -930,8 +931,16 @@ by core. The Juqueen architecture is composed  of IBM PowerPC A2 at 1.6 GHz with
 speed network.
 
 
+In  many situations, using  preconditioners is  essential in  order to  find the
+solution of a linear system.  There are many preconditioners available in PETSc.
+For parallel applications all  the preconditioners based on matrix factorization
+are  not  available. In  our  experiments, we  have  tested  different kinds  of
+preconditioners, however  as it is  not the subject  of this paper, we  will not
+present results with many preconditioners. In  practise, we have chosen to use a
+multigrid (mg)  and successive  over-relaxation (sor). For  more details  on the
+preconditioner in PETSc please consult~\cite{petsc-web-page}.
+
 
-{\bf Description of preconditioners}\\
 
 \begin{table*}[htbp]
 \begin{center}
@@ -959,8 +968,7 @@ speed network.
 
 Table~\ref{tab:03} shows  the execution  times and the  number of  iterations of
 example ex15  of PETSc on the  Juqueen architecture. Different  numbers of cores
-are  studied ranging  from  2,048  up-to 16,383.   Two  preconditioners have  been
-tested: {\it mg} and {\it sor}.   For those experiments,  the number  of components  (or unknowns  of the
+are  studied ranging  from  2,048  up-to 16,383 with the two preconditioners {\it mg} and {\it sor}.   For those experiments,  the number  of components  (or unknowns  of the
 problems)  per core  is fixed  to 25,000,  also called  weak  scaling. This
 number can seem relatively small. In fact, for some applications that need a lot
 of  memory, the  number of  components per  processor requires  sometimes  to be
@@ -1027,8 +1035,40 @@ the number of iterations. So, the overall benefit of using TSIRM is interesting.
 \end{table*}
 
 
-In Table~\ref{tab:04}, some experiments with example ex54 on the Curie architecture are reported.
-
+In  Table~\ref{tab:04},  some  experiments   with  example  ex54  on  the  Curie
+architecture are reported.  For this  application, we fixed $\alpha=0.6$.  As it
+can be seen in that Table, the size of the problem has a strong influence on the
+number of iterations to reach the  convergence. That is why we have preferred to
+change the threshold.  If we set  it to $1e-3$ as with the previous application,
+only one iteration is necessray  to reach the convergence. So Table~\ref{tab:04}
+shows the results  of differents executions with differents  number of cores and
+differents thresholds. As  with the previous example, we  can observe that TSIRM
+is faster than FGMRES. The ratio greatly depends on the number of iterations for
+FMGRES to reach the threshold. The greater the number of iterations to reach the
+convergence is, the  better the ratio between our algorithm  and FMGRES is. This
+experiment is  also a  weak scaling with  approximately $25,000$  components per
+core. It can also  be observed that the difference between CGLS  and LSQR is not
+significant. Both can be good but it seems not possible to know in advance which
+one will be the best.
+
+Table~\ref{tab:05} show a strong scaling experiment with the exemple ex54 on the
+Curie  architecture. So  in  this case,  the  number of  unknownws  is fixed  to
+$204,919,225$ and the number of cores ranges from $512$ to $8192$ with the power
+of two.  The  threshold is fixed to $5e-5$ and only  the $mg$ preconditioner has
+been tested. Here  again we can see that TSIRM is  faster that FGMRES. Efficiecy
+of each algorithms is reported. It  can be noticed that FGMRES is more efficient
+than TSIRM except with $8,192$ cores and that its efficiency is greater that one
+whereas the  efficiency of TSIRM is  lower than one. Nevertheless,  the ratio of
+TSIRM  with any  version  of the  least-squares  method is  always faster.  With
+$8,192$ cores when the number of iterations is far more important for FGMRES, we
+can see that it is only slightly more important for TSIRM.
+
+In  Figure~\ref{fig:02}  we report  the  number  of  iterations per  second  for
+experiments  reported in  Table~\ref{tab:05}.  This Figure  highlights that  the
+number of iterations per  seconds is more of less the same  for FGMRES and TSIRM
+with a little advantage for FGMRES. It  can be explained by the fact that, as we
+have previously explained, that the iterations of the least-sqaure steps are not
+taken into account with TSIRM.
 
 \begin{table*}[htbp]
 \begin{center}