inner-outer iteration solver based on iterative Krylov methods. The main key
points of our solver are given in Algorithm~\ref{algo:01}.
-In order to accelerate the convergence, the outer iteration is implemented as an
-iterative Krylov method which minimizes some error functions over a Krylov
-subspace~\cite{saad96}. At each iteration, the sparse linear system $Ax=b$ is
+In order to accelerate the convergence, the outer iteration applies a least-square minimization on the residuals computed by the inner some error functions over a Krylov
+subspace~\cite{Saad2003}. At each iteration, the sparse linear system $Ax=b$ is
solved iteratively with an iterative method, for example GMRES
-method~\cite{saad86} or some of its variants, and the Krylov subspace that we
+method~\cite{Saad86} or some of its variants, and the Krylov subspace that we
used is spanned by a basis $S$ composed of successive solutions issued from the
inner iteration
\begin{equation}
such that $R=AS$ is a dense rectangular matrix in $\mathbb{R}^{n\times s}$,
$s\ll n$, and $R^T$ denotes the transpose of matrix $R$. We use an iterative
method to solve the least-squares problem~(\ref{eq:01}) such as CGLS
-~\cite{hestenes52} or LSQR~\cite{paige82} which are more appropriate than a
+~\cite{Hestenes52} or LSQR~\cite{Paige82} which are more appropriate than a
direct method in the parallel context.
\begin{algorithm}[t]
% http://www.ctan.org/tex-archive/biblio/bibtex/contrib/doc/
% The IEEEtran BibTeX style support page is at:
% http://www.michaelshell.org/tex/ieeetran/bibtex/
-%\bibliographystyle{IEEEtran}
+\bibliographystyle{IEEEtran}
% argument is your BibTeX string definitions and bibliography database(s)
-%\bibliography{IEEEabrv,../bib/paper}
+\bibliography{biblio}
%
% <OR> manually copy in the resultant .bbl file
% set second argument of \begin to the number of references
% (used to reserve space for the reference number labels box)
-\begin{thebibliography}{1}
+%% \begin{thebibliography}{1}
-\bibitem{saad86} Y.~Saad and M.~H.~Schultz, \emph{GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems}, SIAM Journal on Scientific and Statistical Computing, 7(3):856--869, 1986.
+%% \bibitem{saad86} Y.~Saad and M.~H.~Schultz, \emph{GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems}, SIAM Journal on Scientific and Statistical Computing, 7(3):856--869, 1986.
-\bibitem{saad96} Y.~Saad, \emph{Iterative Methods for Sparse Linear Systems}, PWS Publishing, New York, 1996.
+%% \bibitem{saad96} Y.~Saad, \emph{Iterative Methods for Sparse Linear Systems}, PWS Publishing, New York, 1996.
-\bibitem{hestenes52} M.~R.~Hestenes and E.~Stiefel, \emph{Methods of conjugate gradients for solving linear system}, Journal of Research of National Bureau of Standards, B49:409--436, 1952.
+%% \bibitem{hestenes52} M.~R.~Hestenes and E.~Stiefel, \emph{Methods of conjugate gradients for solving linear system}, Journal of Research of National Bureau of Standards, B49:409--436, 1952.
-\bibitem{paige82} C.~C.~Paige and A.~M.~Saunders, \emph{LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares}, ACM Trans. Math. Softw. 8(1):43--71, 1982.
-\end{thebibliography}
+%% \bibitem{paige82} C.~C.~Paige and A.~M.~Saunders, \emph{LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares}, ACM Trans. Math. Softw. 8(1):43--71, 1982.
+%% \end{thebibliography}