% quality.
-%\usepackage{eqparbox}
+\usepackage{eqparbox}
% Also of notable interest is Scott Pakin's eqparbox package for creating
% (automatically sized) equal width boxes - aka "natural width parboxes".
% Available at:
\hyphenation{op-tical net-works semi-conduc-tor}
-
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
\usepackage{algorithm}
\usepackage{algpseudocode}
\usepackage{amsmath}
\algnewcommand\algorithmicoutput{\textbf{Output:}}
\algnewcommand\Output{\item[\algorithmicoutput]}
-
+\newtheorem{proposition}{Proposition}
\begin{document}
%
% paper title
% can use linebreaks \\ within to get better formatting as desired
-\title{TSARM: A Two-Stage Algorithm with least-square Residual Minimization to solve large sparse linear systems}
-%où
-%\title{A two-stage algorithm with error minimization to solve large sparse linear systems}
-%où
-%\title{???}
+\title{TSIRM: A Two-Stage Iteration with least-squares Residual Minimization algorithm to solve large sparse linear systems}
+
% use a multiple column layout for up to two different
% affiliations
-\author{\IEEEauthorblockN{Rapha\"el Couturier\IEEEauthorrefmark{1}, Lilia Ziane Khodja \IEEEauthorrefmark{2} and Christophe Guyeux\IEEEauthorrefmark{1}}
-\IEEEauthorblockA{\IEEEauthorrefmark{1} Femto-ST Institute, University of Franche Comte, France\\
+\author{\IEEEauthorblockN{Rapha\"el Couturier\IEEEauthorrefmark{1}, Lilia Ziane Khodja\IEEEauthorrefmark{2}, and Christophe Guyeux\IEEEauthorrefmark{1}}
+\IEEEauthorblockA{\IEEEauthorrefmark{1} Femto-ST Institute, University of Franche-Comt\'e, France\\
Email: \{raphael.couturier,christophe.guyeux\}@univ-fcomte.fr}
\IEEEauthorblockA{\IEEEauthorrefmark{2} INRIA Bordeaux Sud-Ouest, France\\
Email: lilia.ziane@inria.fr}
\begin{abstract}
-In this paper we propose a two stage iterative method which increases the
-convergence of Krylov iterative methods, typically those of GMRES variants. The
-principle of our approach is to build an external iteration over the Krylov
-method and to save the current residual frequently (for example, for each
-restart of GMRES). Then after a given number of outer iterations, a minimization
-step is applied on the matrix composed of the saved residuals in order to
-compute a better solution and make a new iteration if necessary. We prove that
-our method has the same convergence property than the inner method used. Some
-experiments using up to 16,394 cores show that compared to GMRES our algorithm
-can be around 7 times faster.
+In this article, a two-stage iterative algorithm is proposed to improve the
+convergence of Krylov based iterative methods, typically those of GMRES
+variants. The principle of the proposed approach is to build an external
+iteration over the Krylov method, and to frequently store its current residual
+(at each GMRES restart for instance). After a given number of outer iterations,
+a least-squares minimization step is applied on the matrix composed by the saved
+residuals, in order to compute a better solution and to make new iterations if
+required. It is proven that the proposal has the same convergence properties
+than the inner embedded method itself. Experiments using up to 16,394 cores
+also show that the proposed algorithm runs around 5 or 7 times faster than
+GMRES.
\end{abstract}
\begin{IEEEkeywords}
% You must have at least 2 lines in the paragraph with the drop letter
% (should never be an issue)
-Iterative methods became more attractive than direct ones to solve very large
-sparse linear systems. Iterative methods are more effecient in a parallel
-context, with thousands of cores, and require less memory and arithmetic
-operations than direct methods. A number of iterative methods are proposed and
-adapted by many researchers and the increased need for solving very large sparse
-linear systems triggered the development of efficient iterative techniques
-suitable for the parallel processing.
-
-Most of the successful iterative methods currently available are based on Krylov
-subspaces which consist in forming a basis of a sequence of successive matrix
-powers times an initial vector for example the residual. These methods are based
-on orthogonality of vectors of the Krylov subspace basis to solve linear
-systems. The most well-known iterative Krylov subspace methods are Conjugate
-Gradient method and GMRES method (generalized minimal residual).
+Iterative methods have recently become more attractive than direct ones to solve very large
+sparse linear systems. They are more efficient in a parallel
+context, supporting thousands of cores, and they require less memory and arithmetic
+operations than direct methods. This is why new iterative methods are frequently
+proposed or adapted by researchers, and the increasing need to solve very large sparse
+linear systems has triggered the development of such efficient iterative techniques
+suitable for parallel processing.
+
+Most of the successful iterative methods currently available are based on so-called ``Krylov
+subspaces''. They consist in forming a basis of successive matrix
+powers multiplied by an initial vector, which can be for instance the residual. These methods use vectors orthogonality of the Krylov subspace basis in order to solve linear
+systems. The most known iterative Krylov subspace methods are conjugate
+gradient and GMRES ones (Generalized Minimal RESidual).
+
However, iterative methods suffer from scalability problems on parallel
-computing platforms with many processors due to their need for reduction
-operations and collective communications to perform matrix-vector
+computing platforms with many processors, due to their need of reduction
+operations, and to collective communications to achieve matrix-vector
multiplications. The communications on large clusters with thousands of cores
-and large sizes of messages can significantly affect the performances of
-iterative methods. In practice, Krylov subspace iteration methods are often used
-with preconditioners in order to increase their convergence and accelerate their
+and large sizes of messages can significantly affect the performances of these
+iterative methods. As a consequence, Krylov subspace iteration methods are often used
+with preconditioners in practice, to increase their convergence and accelerate their
performances. However, most of the good preconditioners are not scalable on
large clusters.
-In this paper we propose a two-stage algorithm based on two nested iterations
-called inner-outer iterations. This algorithm consists in solving the sparse
-linear system iteratively with a small number of inner iterations and restarts
+In this research work, a two-stage algorithm based on two nested iterations
+called inner-outer iterations is proposed. This algorithm consists in solving the sparse
+linear system iteratively with a small number of inner iterations, and restarting
the outer step with a new solution minimizing some error functions over some
previous residuals. This algorithm is iterative and easy to parallelize on large
-clusters and the minimization technique improves its convergence and
+clusters. Furthermore, the minimization technique improves its convergence and
performances.
-The present paper is organized as follows. In Section~\ref{sec:02} some related
-works are presented. Section~\ref{sec:03} presents our two-stage algorithm using
-a least-square residual minimization. Section~\ref{sec:04} describes some
-convergence results on this method. Section~\ref{sec:05} shows some experimental
-results obtained on large clusters of our algorithm using routines of PETSc
-toolkit. Finally Section~\ref{sec:06} concludes and gives some perspectives.
+The present article is organized as follows. Related works are presented in
+Section~\ref{sec:02}. Section~\ref{sec:03} details the two-stage algorithm using
+a least-squares residual minimization, while Section~\ref{sec:04} provides
+convergence results regarding this method. Section~\ref{sec:05} shows some
+experimental results obtained on large clusters using routines of PETSc
+toolkit. This research work ends by a conclusion section, in which the proposal
+is summarized while intended perspectives are provided.
+
%%%*********************************************************
%%%*********************************************************
%%%*********************************************************
%%%*********************************************************
-\section{Two-stage algorithm with least-square residuals minimization}
+\section{Two-stage iteration with least-squares residuals minimization algorithm}
\label{sec:03}
A two-stage algorithm is proposed to solve large sparse linear systems of the
form $Ax=b$, where $A\in\mathbb{R}^{n\times n}$ is a sparse and square
-nonsingular matrix, $x\in\mathbb{R}^n$ is the solution vector and
-$b\in\mathbb{R}^n$ is the right-hand side. The algorithm is implemented as an
-inner-outer iteration solver based on iterative Krylov methods. The main key
-points of our solver are given in Algorithm~\ref{algo:01}.
-
-In order to accelerate the convergence, the outer iteration periodically applies
-a least-square minimization on the residuals computed by the inner solver. The
-inner solver is based on a Krylov method which does not require to be changed.
-
-At each outer iteration, the sparse linear system $Ax=b$ is solved, only for $m$
-iterations, using an iterative method restarting with the previous solution. For
-example, the GMRES method~\cite{Saad86} or some of its variants can be used as a
-inner solver. The current solution of the Krylov method is saved inside a matrix
-$S$ composed of successive solutions computed by the inner iteration.
-
-Periodically, every $s$ iterations, the minimization step is applied in order to
-compute a new solution $x$. For that, the previous residuals are computed with
-$(b-AS)$. The minimization of the residuals is obtained by
+nonsingular matrix, $x\in\mathbb{R}^n$ is the solution vector, and
+$b\in\mathbb{R}^n$ is the right-hand side. As explained previously,
+the algorithm is implemented as an
+inner-outer iteration solver based on iterative Krylov methods. The main
+key-points of the proposed solver are given in Algorithm~\ref{algo:01}.
+It can be summarized as follows: the
+inner solver is a Krylov based one. In order to accelerate its convergence, the
+outer solver periodically applies a least-squares minimization on the residuals computed by the inner one. %Tsolver which does not required to be changed.
+
+At each outer iteration, the sparse linear system $Ax=b$ is partially solved
+using only $m$ iterations of an iterative method, this latter being initialized
+with the last obtained approximation. GMRES method~\cite{Saad86}, or any of its
+variants, can potentially be used as inner solver. The current approximation of
+the Krylov method is then stored inside a $n \times s$ matrix $S$, which is
+composed by the $s$ last solutions that have been computed during the inner
+iterations phase. In the remainder, the $i$-th column vector of $S$ will be
+denoted by $S_i$.
+
+At each $s$ iterations, another kind of minimization step is applied in order to
+compute a new solution $x$. For that, the previous residuals of $Ax=b$ are computed by
+the inner iterations with $(b-AS)$. The minimization of the residuals is obtained by
\begin{equation}
\underset{\alpha\in\mathbb{R}^{s}}{min}\|b-R\alpha\|_2
\label{eq:01}
\end{equation}
-with $R=AS$. Then the new solution $x$ is computed with $x=S\alpha$.
+with $R=AS$. The new solution $x$ is then computed with $x=S\alpha$.
+
+
+In practice, $R$ is a dense rectangular matrix belonging in $\mathbb{R}^{n\times s}$,
+with $s\ll n$. In order to minimize~\eqref{eq:01}, a least-squares method such as
+CGLS ~\cite{Hestenes52} or LSQR~\cite{Paige82} is used. Remark that these methods are more
+appropriate than a single direct method in a parallel context.
-In practice, $R$ is a dense rectangular matrix in $\mathbb{R}^{n\times s}$,
-$s\ll n$. In order to minimize~(\ref{eq:01}), a least-square method such as
-CGLS ~\cite{Hestenes52} or LSQR~\cite{Paige82} is used. Those methods are more
-appropriate than a direct method in a parallel context.
\begin{algorithm}[t]
-\caption{TSARM}
+\caption{TSIRM}
\begin{algorithmic}[1]
\Input $A$ (sparse matrix), $b$ (right-hand side)
\Output $x$ (solution vector)\vspace{0.2cm}
- \State Set the initial guess $x^0$
- \For {$k=1,2,3,\ldots$ until convergence (error$<\epsilon_{tsarm}$)} \label{algo:conv}
- \State $x^k=Solve(A,b,x^{k-1},max\_iter_{kryl})$ \label{algo:solve}
- \State retrieve error
- \State $S_{k~mod~s}=x^k$ \label{algo:store}
- \If {$k$ mod $s=0$ {\bf and} error$>\epsilon_{tsarm}$}
+ \State Set the initial guess $x_0$
+ \For {$k=1,2,3,\ldots$ until convergence (error$<\epsilon_{tsirm}$)} \label{algo:conv}
+ \State $[x_k,error]=Solve(A,b,x_{k-1},max\_iter_{kryl})$ \label{algo:solve}
+ \State $S_{k \mod s}=x_k$ \label{algo:store}
+ \If {$k \mod s=0$ {\bf and} error$>\epsilon_{kryl}$}
\State $R=AS$ \Comment{compute dense matrix} \label{algo:matrix_mul}
- \State Solve least-squares problem $\underset{\alpha\in\mathbb{R}^{s}}{min}\|b-R\alpha\|_2$ \label{algo:}
- \State $x^k=S\alpha$ \Comment{compute new solution}
+ \State $\alpha=Least\_Squares(R,b,max\_iter_{ls})$ \label{algo:}
+ \State $x_k=S\alpha$ \Comment{compute new solution}
\EndIf
\EndFor
\end{algorithmic}
\label{algo:01}
\end{algorithm}
-Algorithm~\ref{algo:01} summarizes the principle of our method. The outer
-iteration is inside the for loop. Line~\ref{algo:solve}, the Krylov method is
-called for a maximum of $max\_iter_{kryl}$ iterations. In practice, we suggest to set this parameter
-equals to the restart number of the GMRES-like method. Moreover, a tolerance
-threshold must be specified for the solver. In practice, this threshold must be
-much smaller than the convergence threshold of the TSARM algorithm (i.e.
-$\epsilon_{tsarm}$). Line~\ref{algo:store}, $S_{k~ mod~ s}=x^k$ consists in copying the
-solution $x_k$ into the column $k~ mod~ s$ of the matrix $S$. After the
-minimization, the matrix $S$ is reused with the new values of the residuals. To
-solve the minimization problem, an iterative method is used. Two parameters are
-required for that: the maximum number of iteration and the threshold to stop the
-method.
-
-To summarize, the important parameters of TSARM are:
+Algorithm~\ref{algo:01} summarizes the principle of the proposed method. The
+outer iteration is inside the \emph{for} loop. Line~\ref{algo:solve}, the Krylov
+method is called for a maximum of $max\_iter_{kryl}$ iterations. In practice,
+we suggest to set this parameter equal to the restart number in the GMRES-like
+method. Moreover, a tolerance threshold must be specified for the solver. In
+practice, this threshold must be much smaller than the convergence threshold of
+the TSIRM algorithm (\emph{i.e.}, $\epsilon_{tsirm}$). We also consider that
+after the call of the $Solve$ function, we obtain the vector $x_k$ and the error
+which is defined by $||Ax^k-b||_2$.
+
+ Line~\ref{algo:store},
+$S_{k \mod s}=x^k$ consists in copying the solution $x_k$ into the column $k
+\mod s$ of $S$. After the minimization, the matrix $S$ is reused with the new
+values of the residuals. To solve the minimization problem, an iterative method
+is used. Two parameters are required for that: the maximum number of iterations
+and the threshold to stop the method.
+
+Let us summarize the most important parameters of TSIRM:
\begin{itemize}
-\item $\epsilon_{tsarm}$ the threshold to stop the TSARM method
-\item $max\_iter_{kryl}$ the maximum number of iterations for the krylov method
-\item $s$ the number of outer iterations before applying the minimization step
-\item $max\_iter_{ls}$ the maximum number of iterations for the iterative least-square method
-\item $\epsilon_{ls}$ the threshold to stop the least-square method
+\item $\epsilon_{tsirm}$: the threshold to stop the TSIRM method;
+\item $max\_iter_{kryl}$: the maximum number of iterations for the Krylov method;
+\item $s$: the number of outer iterations before applying the minimization step;
+\item $max\_iter_{ls}$: the maximum number of iterations for the iterative least-squares method;
+\item $\epsilon_{ls}$: the threshold used to stop the least-squares method.
\end{itemize}
-The parallelisation of TSARM relies on the parallelization of all its
-parts. More precisely, except the least-square step, all the other parts are
+The parallelization of TSIRM relies on the parallelization of all its
+parts. More precisely, except the least-squares step, all the other parts are
obvious to achieve out in parallel. In order to develop a parallel version of
our code, we have chosen to use PETSc~\cite{petsc-web-page}. For
line~\ref{algo:matrix_mul} the matrix-matrix multiplication is implemented and
efficient since the matrix $A$ is sparse and since the matrix $S$ contains few
-colums in practice. As explained previously, at least two methods seem to be
-interesting to solve the least-square minimization, CGLS and LSQR.
+columns in practice. As explained previously, at least two methods seem to be
+interesting to solve the least-squares minimization, CGLS and LSQR.
In the following we remind the CGLS algorithm. The LSQR method follows more or
-less the same principle but it take more place, so we briefly explain the parallelization of CGLS which is similar to LSQR.
+less the same principle but it takes more place, so we briefly explain the parallelization of CGLS which is similar to LSQR.
\begin{algorithm}[t]
\caption{CGLS}
\begin{algorithmic}[1]
\Input $A$ (matrix), $b$ (right-hand side)
\Output $x$ (solution vector)\vspace{0.2cm}
- \State $r=b-Ax$
- \State $p=A'r$
- \State $s=p$
- \State $g=||s||^2_2$
- \For {$k=1,2,3,\ldots$ until convergence (g$<\epsilon_{ls}$)} \label{algo2:conv}
- \State $q=Ap$
- \State $\alpha=g/||q||^2_2$
- \State $x=x+alpha*p$
- \State $r=r-alpha*q$
- \State $s=A'*r$
- \State $g_{old}=g$
- \State $g=||s||^2_2$
- \State $\beta=g/g_{old}$
+ \State Let $x_0$ be an initial approximation
+ \State $r_0=b-Ax_0$
+ \State $p_1=A^Tr_0$
+ \State $s_0=p_1$
+ \State $\gamma=||s_0||^2_2$
+ \For {$k=1,2,3,\ldots$ until convergence ($\gamma<\epsilon_{ls}$)} \label{algo2:conv}
+ \State $q_k=Ap_k$
+ \State $\alpha_k=\gamma/||q_k||^2_2$
+ \State $x_k=x_{k-1}+\alpha_kp_k$
+ \State $r_k=r_{k-1}-\alpha_kq_k$
+ \State $s_k=A^Tr_k$
+ \State $\gamma_{old}=\gamma$
+ \State $\gamma=||s_k||^2_2$
+ \State $\beta_k=\gamma/\gamma_{old}$
+ \State $p_{k+1}=s_k+\beta_kp_k$
\EndFor
\end{algorithmic}
\label{algo:02}
In each iteration of CGLS, there is two matrix-vector multiplications and some
-classical operations: dots, norm, multiplication and addition on vectors. All
+classical operations: dot product, norm, multiplication and addition on vectors. All
these operations are easy to implement in PETSc or similar environment.
\section{Convergence results}
\label{sec:04}
+Let us recall the following result, see~\cite{Saad86} for further readings.
+\begin{proposition}
+\label{prop:saad}
+Suppose that $A$ is a positive real matrix with symmetric part $M$. Then the residual norm provided at the $m$-th step of GMRES satisfies:
+\begin{equation}
+||r_m|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{m}{2}} ||r_0|| ,
+\end{equation}
+where $\alpha = \lambda_{min}(M)^2$ and $\beta = \lambda_{max}(A^T A)$, which proves
+the convergence of GMRES($m$) for all $m$ under that assumption regarding $A$.
+\end{proposition}
+
+
+We can now claim that,
+\begin{proposition}
+If $A$ is a positive real matrix and GMRES($m$) is used as solver, then the TSIRM algorithm is convergent. Furthermore,
+let $r_k$ be the
+$k$-th residue of TSIRM, then
+we still have:
+\begin{equation}
+||r_k|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{km}{2}} ||r_0|| ,
+\end{equation}
+where $\alpha$ and $\beta$ are defined as in Proposition~\ref{prop:saad}.
+\end{proposition}
+\begin{proof}
+We will prove by a mathematical induction that, for each $k \in \mathbb{N}^\ast$,
+$||r_k|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{mk}{2}} ||r_0||.$
+The base case is obvious, as for $k=1$, the TSIRM algorithm simply consists in applying GMRES($m$) once, leading to a new residual $r_1$ which follows the inductive hypothesis due to Proposition~\ref{prop:saad}.
+Suppose now that the claim holds for all $m=1, 2, \hdots, k-1$, that is, $\forall m \in \{1,2,\hdots, k-1\}$, $||r_m|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{km}{2}} ||r_0||$.
+We will show that the statement holds too for $r_k$. Two situations can occur:
+\begin{itemize}
+\item If $k \mod m \neq 0$, then the TSIRM algorithm consists in executing GMRES once. In that case, we obtain $||r_k|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{m}{2}} ||r_{k-1}||\leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{km}{2}} ||r_0||$ by the inductive hypothesis.
+\item Else, the TSIRM algorithm consists in two stages: a first GMRES($m$) execution leads to a temporary $x_k$ whose residue satisfies $||r_k|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{m}{2}} ||r_{k-1}||\leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{km}{2}} ||r_0||$, and a least squares resolution.
+Let $\operatorname{span}(S) = \left \{ {\sum_{i=1}^k \lambda_i v_i \Big| k \in \mathbb{N}, v_i \in S, \lambda _i \in \mathbb{R}} \right \}$ be the linear span of a set of real vectors $S$. So,\\
+$\min_{\alpha \in \mathbb{R}^s} ||b-R\alpha ||_2 = \min_{\alpha \in \mathbb{R}^s} ||b-AS\alpha ||_2$
+
+$\begin{array}{ll}
+& = \min_{x \in span\left(S_{k-s+1}, S_{k-s+2}, \hdots, S_{k} \right)} ||b-AS\alpha ||_2\\
+& = \min_{x \in span\left(x_{k-s+1}, x_{k-s}+2, \hdots, x_{k} \right)} ||b-AS\alpha ||_2\\
+& \leqslant \min_{x \in span\left( x_{k} \right)} ||b-Ax ||_2\\
+& \leqslant \min_{\lambda \in \mathbb{R}} ||b-\lambda Ax_{k} ||_2\\
+& \leqslant ||b-Ax_{k}||_2\\
+& = ||r_k||_2\\
+& \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{km}{2}} ||r_0||,
+\end{array}$
+\end{itemize}
+which concludes the induction and the proof.
+\end{proof}
+
+We can remark that, at each iterate, the residue of the TSIRM algorithm is lower
+than the one of the GMRES method.
%%%*********************************************************
%%%*********************************************************
-\section{Experiments using petsc}
+\section{Experiments using PETSc}
\label{sec:05}
In order to see the influence of our algorithm with only one processor, we first
show a comparison with the standard version of GMRES and our algorithm. In
-table~\ref{tab:01}, we show the matrices we have used and some of them
+Table~\ref{tab:01}, we show the matrices we have used and some of them
characteristics. For all the matrices, the name, the field, the number of rows
-and the number of nonzero elements is given.
+and the number of nonzero elements are given.
-\begin{table*}
+\begin{table}[htbp]
\begin{center}
\begin{tabular}{|c|c|r|r|r|}
\hline
Matrix name & Field &\# Rows & \# Nonzeros \\\hline \hline
crashbasis & Optimization & 160,000 & 1,750,416 \\
-parabolic\_fem & Computational fluid dynamics & 525,825 & 2,100,225 \\
+parabolic\_fem & Comput. fluid dynamics & 525,825 & 2,100,225 \\
epb3 & Thermal problem & 84,617 & 463,625 \\
-atmosmodj & Computational fluid dynamics & 1,270,432 & 8,814,880 \\
-bfwa398 & Electromagnetics problem & 398 & 3,678 \\
+atmosmodj & Comput. fluid dynamics & 1,270,432 & 8,814,880 \\
+bfwa398 & Electromagnetics pb & 398 & 3,678 \\
torso3 & 2D/3D problem & 259,156 & 4,429,042 \\
\hline
\caption{Main characteristics of the sparse matrices chosen from the Davis collection}
\label{tab:01}
\end{center}
-\end{table*}
+\end{table}
The following parameters have been chosen for our experiments. As by default
the restart of GMRES is performed every 30 iterations, we have chosen to stop
-the GMRES every 30 iterations, $max\_iter_{kryl}=30$). $s$ is set to 8. CGLS is
+the GMRES every 30 iterations (\emph{i.e.} $max\_iter_{kryl}=30$). $s$ is set to 8. CGLS is
chosen to minimize the least-squares problem with the following parameters:
$\epsilon_{ls}=1e-40$ and $max\_iter_{ls}=20$. The external precision is set to
-$\epsilon_{tsarm}=1e-10$. Those experiments have been performed on a Intel(R)
+$\epsilon_{tsirm}=1e-10$. Those experiments have been performed on a Intel(R)
Core(TM) i7-3630QM CPU @ 2.40GHz with the version 3.5.1 of PETSc.
systems obtained with the previous matrices with a GMRES variant and with out 2
stage algorithm are given. In the second column, it can be noticed that either
gmres or fgmres is used to solve the linear system. According to the matrices,
-different preconditioner is used. With TSARM, the same solver and the same
-preconditionner is used. This Table shows that TSARM can drastically reduce the
+different preconditioner is used. With TSIRM, the same solver and the same
+preconditionner are used. This Table shows that TSIRM can drastically reduce the
number of iterations to reach the convergence when the number of iterations for
the normal GMRES is more or less greater than 500. In fact this also depends on
tow parameters: the number of iterations to stop GMRES and the number of
iterations to perform the minimization.
-\begin{table}
+\begin{table}[htbp]
\begin{center}
\begin{tabular}{|c|c|r|r|r|r|}
\hline
- \multirow{2}{*}{Matrix name} & Solver / & \multicolumn{2}{c|}{GMRES} & \multicolumn{2}{c|}{TSARM CGLS} \\
+ \multirow{2}{*}{Matrix name} & Solver / & \multicolumn{2}{c|}{GMRES} & \multicolumn{2}{c|}{TSIRM CGLS} \\
\cline{3-6}
& precond & Time & \# Iter. & Time & \# Iter. \\\hline \hline
\hline
\end{tabular}
-\caption{Comparison of (F)GMRES and 2 stage (F)GMRES algorithms in sequential with some matrices, time is expressed in seconds.}
+\caption{Comparison of (F)GMRES and TSIRM with (F)GMRES in sequential with some matrices, time is expressed in seconds.}
\label{tab:02}
\end{center}
\end{table}
-In order to perform larger experiments, we have tested some example application
+In order to perform larger experiments, we have tested some example applications
of PETSc. Those applications are available in the ksp part which is suited for
scalable linear equations solvers:
\begin{itemize}
\item ex15 is an example which solves in parallel an operator using a finite
- difference scheme. The diagonal is equals to 4 and 4 extra-diagonals
- representing the neighbors in each directions is equal to -1. This example is
+ difference scheme. The diagonal is equal to 4 and 4 extra-diagonals
+ representing the neighbors in each directions are equal to -1. This example is
used in many physical phenomena, for example, heat and fluid flow, wave
- propagation...
+ propagation, etc.
\item ex54 is another example based on 2D problem discretized with quadrilateral
finite elements. For this example, the user can define the scaling of material
- coefficient in embedded circle, it is called $\alpha$.
+ coefficient in embedded circle called $\alpha$.
\end{itemize}
-For more technical details on these applications, interested reader are invited
-to read the codes available in the PETSc sources. Those problem have been
-chosen because they are scalable with many cores. We have tested other problem
-but they are not scalable with many cores.
+For more technical details on these applications, interested readers are invited
+to read the codes available in the PETSc sources. Those problems have been
+chosen because they are scalable with many cores which is not the case of other
+problems that we have tested.
+
+In the following larger experiments are described on two large scale
+architectures: Curie and Juqeen. Both these architectures are supercomputer
+composed of 80,640 cores for Curie and 458,752 cores for Juqueen. Those machines
+are respectively hosted by GENCI in France and Jülich Supercomputing Centre in
+Germany. They belongs with other similar architectures of the PRACE initiative (
+Partnership for Advanced Computing in Europe) which aims at proposing high
+performance supercomputing architecture to enhance research in Europe. The Curie
+architecture is composed of Intel E5-2680 processors at 2.7 GHz with 2Gb memory
+by core. The Juqueen architecture is composed of IBM PowerPC A2 at 1.6 GHz with
+1Gb memory per core. Both those architecture are equiped with a dedicated high
+speed network.
+{\bf Description of preconditioners}\\
-\begin{table*}
+\begin{table*}[htbp]
\begin{center}
\begin{tabular}{|r|r|r|r|r|r|r|r|r|}
\hline
- nb. cores & precond & \multicolumn{2}{c|}{GMRES} & \multicolumn{2}{c|}{TSARM CGLS} & \multicolumn{2}{c|}{TSARM LSQR} & best gain \\
+ nb. cores & precond & \multicolumn{2}{c|}{FGMRES} & \multicolumn{2}{c|}{TSIRM CGLS} & \multicolumn{2}{c|}{TSIRM LSQR} & best gain \\
\cline{3-8}
& & Time & \# Iter. & Time & \# Iter. & Time & \# Iter. & \\\hline \hline
2,048 & mg & 403.49 & 18,210 & 73.89 & 3,060 & 77.84 & 3,270 & 5.46 \\
\hline
\end{tabular}
-\caption{Comparison of FGMRES and 2 stage FGMRES algorithms for ex15 of Petsc with 25000 components per core on Juqueen (threshold 1e-3, restart=30, s=12), time is expressed in seconds.}
+\caption{Comparison of FGMRES and TSIRM with FGMRES for example ex15 of PETSc with two preconditioners (mg and sor) with 25,000 components per core on Juqueen (threshold 1e-3, restart=30, s=12), time is expressed in seconds.}
\label{tab:03}
\end{center}
\end{table*}
-
-\begin{figure}
+Table~\ref{tab:03} shows the execution times and the number of iterations of
+example ex15 of PETSc on the Juqueen architecture. Different numbers of cores
+are studied ranging from 2,048 up-to 16,383. Two preconditioners have been
+tested: {\it mg} and {\it sor}. For those experiments, the number of components (or unknowns of the
+problems) per core is fixed to 25,000, also called weak scaling. This
+number can seem relatively small. In fact, for some applications that need a lot
+of memory, the number of components per processor requires sometimes to be
+small.
+
+
+
+In Table~\ref{tab:03}, we can notice that TSIRM is always faster than FGMRES. The last
+column shows the ratio between FGMRES and the best version of TSIRM according to
+the minimization procedure: CGLS or LSQR. Even if we have computed the worst
+case between CGLS and LSQR, it is clear that TSIRM is always faster than
+FGMRES. For this example, the multigrid preconditioner is faster than SOR. The
+gain between TSIRM and FGMRES is more or less similar for the two
+preconditioners. Looking at the number of iterations to reach the convergence,
+it is obvious that TSIRM allows the reduction of the number of iterations. It
+should be noticed that for TSIRM, in those experiments, only the iterations of
+the Krylov solver are taken into account. Iterations of CGLS or LSQR were not
+recorded but they are time-consuming. In general each $max\_iter_{kryl}*s$ which
+corresponds to 30*12, there are $max\_iter_{ls}$ which corresponds to 15.
+
+\begin{figure}[htbp]
\centering
\includegraphics[width=0.45\textwidth]{nb_iter_sec_ex15_juqueen}
-\caption{Number of iterations per second with ex15 and the same parameters than in Table~\ref{tab:03}}
+\caption{Number of iterations per second with ex15 and the same parameters than in Table~\ref{tab:03} (weak scaling)}
\label{fig:01}
\end{figure}
+In Figure~\ref{fig:01}, the number of iterations per second corresponding to
+Table~\ref{tab:03} is displayed. It can be noticed that the number of
+iterations per second of FMGRES is constant whereas it decreases with TSIRM with
+both preconditioners. This can be explained by the fact that when the number of
+cores increases the time for the least-squares minimization step also increases but, generally,
+when the number of cores increases, the number of iterations to reach the
+threshold also increases, and, in that case, TSIRM is more efficient to reduce
+the number of iterations. So, the overall benefit of using TSIRM is interesting.
+
+
+
-\begin{table*}
+\begin{table*}[htbp]
\begin{center}
\begin{tabular}{|r|r|r|r|r|r|r|r|r|}
\hline
- nb. cores & threshold & \multicolumn{2}{c|}{GMRES} & \multicolumn{2}{c|}{TSARM CGLS} & \multicolumn{2}{c|}{TSARM LSQR} & best gain \\
+ nb. cores & threshold & \multicolumn{2}{c|}{FGMRES} & \multicolumn{2}{c|}{TSIRM CGLS} & \multicolumn{2}{c|}{TSIRM LSQR} & best gain \\
\cline{3-8}
& & Time & \# Iter. & Time & \# Iter. & Time & \# Iter. & \\\hline \hline
2,048 & 8e-5 & 108.88 & 16,560 & 23.06 & 3,630 & 22.79 & 3,630 & 4.77 \\
\hline
\end{tabular}
-\caption{Comparison of FGMRES and 2 stage FGMRES algorithms for ex54 of Petsc (both with the MG preconditioner) with 25000 components per core on Curie (restart=30, s=12), time is expressed in seconds.}
+\caption{Comparison of FGMRES and TSIRM with FGMRES algorithms for ex54 of Petsc (both with the MG preconditioner) with 25,000 components per core on Curie (restart=30, s=12), time is expressed in seconds.}
\label{tab:04}
\end{center}
\end{table*}
+In Table~\ref{tab:04}, some experiments with example ex54 on the Curie architecture are reported.
-
-\begin{table*}
+\begin{table*}[htbp]
\begin{center}
\begin{tabular}{|r|r|r|r|r|r|r|r|r|r|r|}
\hline
- nb. cores & \multicolumn{2}{c|}{GMRES} & \multicolumn{2}{c|}{TSARM CGLS} & \multicolumn{2}{c|}{TSARM LSQR} & best gain & \multicolumn{3}{c|}{efficiency} \\
+ nb. cores & \multicolumn{2}{c|}{FGMRES} & \multicolumn{2}{c|}{TSIRM CGLS} & \multicolumn{2}{c|}{TSIRM LSQR} & best gain & \multicolumn{3}{c|}{efficiency} \\
\cline{2-7} \cline{9-11}
- & Time & \# Iter. & Time & \# Iter. & Time & \# Iter. & & GMRES & TS CGLS & TS LSQR\\\hline \hline
+ & Time & \# Iter. & Time & \# Iter. & Time & \# Iter. & & FGMRES & TS CGLS & TS LSQR\\\hline \hline
512 & 3,969.69 & 33,120 & 709.57 & 5,790 & 622.76 & 5,070 & 6.37 & 1 & 1 & 1 \\
1024 & 1,530.06 & 25,860 & 290.95 & 4,830 & 307.71 & 5,070 & 5.25 & 1.30 & 1.21 & 1.01 \\
2048 & 919.62 & 31,470 & 237.52 & 8,040 & 194.22 & 6,510 & 4.73 & 1.08 & .75 & .80\\
\hline
\end{tabular}
-\caption{Comparison of FGMRES and 2 stage FGMRES algorithms for ex54 of Petsc (both with the MG preconditioner) with 204,919,225 components on Curie with different number of cores (restart=30, s=12, threshol 5e-5), time is expressed in seconds.}
+\caption{Comparison of FGMRES and TSIRM with FGMRES for ex54 of Petsc (both with the MG preconditioner) with 204,919,225 components on Curie with different number of cores (restart=30, s=12, threshold 5e-5), time is expressed in seconds.}
\label{tab:05}
\end{center}
\end{table*}
+\begin{figure}[htbp]
+\centering
+ \includegraphics[width=0.45\textwidth]{nb_iter_sec_ex54_curie}
+\caption{Number of iterations per second with ex54 and the same parameters than in Table~\ref{tab:05} (strong scaling)}
+\label{fig:02}
+\end{figure}
+
%%%*********************************************************
%%%*********************************************************
%%%*********************************************************
%%%*********************************************************
+A novel two-stage iterative algorithm has been proposed in this article,
+in order to accelerate the convergence Krylov iterative methods.
+Our TSIRM proposal acts as a merger between Krylov based solvers and
+a least-squares minimization step.
+The convergence of the method has been proven in some situations, while
+experiments up to 16,394 cores have been led to verify that TSIRM runs
+5 or 7 times faster than GMRES.
-future plan : \\
-- study other kinds of matrices, problems, inner solvers\\
-- test the influence of all the parameters\\
-- adaptative number of outer iterations to minimize\\
-- other methods to minimize the residuals?\\
-- implement our solver inside PETSc
+
+For future work, the authors' intention is to investigate
+other kinds of matrices, problems, and inner solvers. The
+influence of all parameters must be tested too, while
+other methods to minimize the residuals must be regarded.
+The number of outer iterations to minimize should become
+adaptative to improve the overall performances of the proposal.
+Finally, this solver will be implemented inside PETSc.
% conference papers do not normally have an appendix
%%%*********************************************************
\section*{Acknowledgment}
This paper is partially funded by the Labex ACTION program (contract
-ANR-11-LABX-01-01). We acknowledge PRACE for awarding us access to resource
+ANR-11-LABX-01-01). We acknowledge PRACE for awarding us access to resources
Curie and Juqueen respectively based in France and Germany.
% that's all folks
\end{document}
-
-