X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/GMRES2stage.git/blobdiff_plain/0501cb56e1c4b2968b9f435cc1f53e348a8bd434..093b40c0c2a74ebfa6e3366e75a49bac1d4f59f2:/paper.tex diff --git a/paper.tex b/paper.tex index 4a8bc4d..012e7f1 100644 --- a/paper.tex +++ b/paper.tex @@ -380,7 +380,7 @@ % use a multiple column layout for up to two different % affiliations -\author{\IEEEauthorblockN{Rapha\"el Couturier\IEEEauthorrefmark{1}, Lilia Ziane Khodja \IEEEauthorrefmark{2}, and Christophe Guyeux\IEEEauthorrefmark{1}} +\author{\IEEEauthorblockN{Rapha\"el Couturier\IEEEauthorrefmark{1}, Lilia Ziane Khodja\IEEEauthorrefmark{2}, and Christophe Guyeux\IEEEauthorrefmark{1}} \IEEEauthorblockA{\IEEEauthorrefmark{1} Femto-ST Institute, University of Franche Comte, France\\ Email: \{raphael.couturier,christophe.guyeux\}@univ-fcomte.fr} \IEEEauthorblockA{\IEEEauthorrefmark{2} INRIA Bordeaux Sud-Ouest, France\\ @@ -737,28 +737,40 @@ these operations are easy to implement in PETSc or similar environment. \label{sec:04} Let us recall the following result, see~\cite{Saad86}. \begin{proposition} +\label{prop:saad} Suppose that $A$ is a positive real matrix with symmetric part $M$. Then the residual norm provided at the $m$-th step of GMRES satisfies: \begin{equation} ||r_m|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{m}{2}} ||r_0|| , \end{equation} -where $\alpha = \lambda_min(M)^2$ and $\beta = \lambda_max(A^T A)$, which proves +where $\alpha = \lambda_{min}(M)^2$ and $\beta = \lambda_{max}(A^T A)$, which proves the convergence of GMRES($m$) for all $m$ under that assumption regarding $A$. \end{proposition} We can now claim that, \begin{proposition} -If $A$ is a positive real matrix and GMRES($m$) is used as solver, then the TSIRM algorithm is convergent. +If $A$ is a positive real matrix and GMRES($m$) is used as solver, then the TSIRM algorithm is convergent. Furthermore, +let $r_k$ be the +$k$-th residue of TSIRM, then +we still have: +\begin{equation} +||r_k|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{km}{2}} ||r_0|| , +\end{equation} +where $\alpha$ and $\beta$ are defined as in Proposition~\ref{prop:saad}. \end{proposition} \begin{proof} -Let $r_k = b-Ax_k$, where $x_k$ is the approximation of the solution after the -$k$-th iterate of TSIRM. -We will prove that $r_k \rightarrow 0$ when $k \rightarrow +\infty$. +We will prove by a mathematical induction that, for each $k \in \mathbb{N}^\ast$, +$||r_k|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{mk}{2}} ||r_0||.$ -Each step of the TSIRM algorithm \\ +The base case is obvious, as for $k=1$, the TSIRM algorithm simply consists in applying GMRES($m$) once, leading to a new residual $r_1$ which follows the inductive hypothesis due to Proposition~\ref{prop:saad}. -Let $\operatorname{span}(S) = \left \{ {\sum_{i=1}^k \lambda_i v_i \Big| k \in \mathbb{N}, v_i \in S, \lambda _i \in \mathbb{R}} \right \}$ be the linear span of a set of vectors $S$. So,\\ +Suppose now that the claim holds for all $m=1, 2, \hdots, k-1$, that is, $\forall m \in \{1,2,\hdots, k-1\}$, $||r_m|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{km}{2}} ||r_0||$. +We will show that the statement holds too for $r_k$. Two situations can occur: +\begin{itemize} +\item If $k \mod m \neq 0$, then the TSIRM algorithm consists in executing GMRES once. In that case, we obtain $||r_k|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{m}{2}} ||r_{k-1}||\leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{km}{2}} ||r_0||$ by the inductive hypothesis. +\item Else, the TSIRM algorithm consists in two stages: a first GMRES($m$) execution leads to a temporary $x_k$ whose residue satisfies $||r_k|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{m}{2}} ||r_{k-1}||\leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{km}{2}} ||r_0||$, and a least squares resolution. +Let $\operatorname{span}(S) = \left \{ {\sum_{i=1}^k \lambda_i v_i \Big| k \in \mathbb{N}, v_i \in S, \lambda _i \in \mathbb{R}} \right \}$ be the linear span of a set of real vectors $S$. So,\\ $\min_{\alpha \in \mathbb{R}^s} ||b-R\alpha ||_2 = \min_{\alpha \in \mathbb{R}^s} ||b-AS\alpha ||_2$ $\begin{array}{ll} @@ -768,8 +780,11 @@ $\begin{array}{ll} & \leqslant \min_{\lambda \in \mathbb{R}} ||b-\lambda Ax_{k-1} ||_2\\ & \leqslant ||b-Ax_{k-1}||_2 . \end{array}$ +\end{itemize} \end{proof} +We can remark that, at each iterate, the residue of the TSIRM algorithm is lower +than the one of the GMRES method. %%%********************************************************* %%%*********************************************************