X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/GMRES2stage.git/blobdiff_plain/093b40c0c2a74ebfa6e3366e75a49bac1d4f59f2..dfaf80991de90bf68637d2695dec704697458ffa:/paper.tex diff --git a/paper.tex b/paper.tex index 012e7f1..896ac71 100644 --- a/paper.tex +++ b/paper.tex @@ -381,7 +381,7 @@ % affiliations \author{\IEEEauthorblockN{Rapha\"el Couturier\IEEEauthorrefmark{1}, Lilia Ziane Khodja\IEEEauthorrefmark{2}, and Christophe Guyeux\IEEEauthorrefmark{1}} -\IEEEauthorblockA{\IEEEauthorrefmark{1} Femto-ST Institute, University of Franche Comte, France\\ +\IEEEauthorblockA{\IEEEauthorrefmark{1} Femto-ST Institute, University of Franche-Comt\'e, France\\ Email: \{raphael.couturier,christophe.guyeux\}@univ-fcomte.fr} \IEEEauthorblockA{\IEEEauthorrefmark{2} INRIA Bordeaux Sud-Ouest, France\\ Email: lilia.ziane@inria.fr} @@ -564,7 +564,7 @@ gradient and GMRES ones (Generalized Minimal RESidual). However, iterative methods suffer from scalability problems on parallel computing platforms with many processors, due to their need of reduction -operations, and to collective communications to achive matrix-vector +operations, and to collective communications to achieve matrix-vector multiplications. The communications on large clusters with thousands of cores and large sizes of messages can significantly affect the performances of these iterative methods. As a consequence, Krylov subspace iteration methods are often used @@ -621,19 +621,21 @@ outer solver periodically applies a least-squares minimization on the residuals At each outer iteration, the sparse linear system $Ax=b$ is partially solved using only $m$ iterations of an iterative method, this latter being initialized with the -best known approximation previously obtained. -GMRES method~\cite{Saad86}, or any of its variants, can be used for instance as an -inner solver. The current approximation of the Krylov method is then stored inside a matrix -$S$ composed by the successive solutions that are computed during inner iterations. - -At each $s$ iterations, the minimization step is applied in order to +last obtained approximation. +GMRES method~\cite{Saad86}, or any of its variants, can potentially be used as +inner solver. The current approximation of the Krylov method is then stored inside a $n \times s$ matrix +$S$, which is composed by the $s$ last solutions that have been computed during +the inner iterations phase. +In the remainder, the $i$-th column vector of $S$ will be denoted by $S_i$. + +At each $s$ iterations, another kind of minimization step is applied in order to compute a new solution $x$. For that, the previous residuals of $Ax=b$ are computed by the inner iterations with $(b-AS)$. The minimization of the residuals is obtained by \begin{equation} \underset{\alpha\in\mathbb{R}^{s}}{min}\|b-R\alpha\|_2 \label{eq:01} \end{equation} -with $R=AS$. Then the new solution $x$ is computed with $x=S\alpha$. +with $R=AS$. The new solution $x$ is then computed with $x=S\alpha$. In practice, $R$ is a dense rectangular matrix belonging in $\mathbb{R}^{n\times s}$, @@ -663,14 +665,15 @@ appropriate than a single direct method in a parallel context. \label{algo:01} \end{algorithm} -Algorithm~\ref{algo:01} summarizes the principle of our method. The outer -iteration is inside the for loop. Line~\ref{algo:solve}, the Krylov method is +Algorithm~\ref{algo:01} summarizes the principle of the proposed method. The outer +iteration is inside the \emph{for} loop. Line~\ref{algo:solve}, the Krylov method is called for a maximum of $max\_iter_{kryl}$ iterations. In practice, we suggest to set this parameter -equals to the restart number of the GMRES-like method. Moreover, a tolerance +equal to the restart number in the GMRES-like method. Moreover, a tolerance threshold must be specified for the solver. In practice, this threshold must be -much smaller than the convergence threshold of the TSIRM algorithm (\emph{i.e.} +much smaller than the convergence threshold of the TSIRM algorithm (\emph{i.e.}, $\epsilon_{tsirm}$). Line~\ref{algo:store}, $S_{k \mod s}=x^k$ consists in copying the -solution $x_k$ into the column $k \mod s$ of the matrix $S$, where $S$ is a matrix of size $n\times s$ whose column vector $i$ is denoted by $S_i$. After the +solution $x_k$ into the column $k \mod s$ of $S$. +After the minimization, the matrix $S$ is reused with the new values of the residuals. To solve the minimization problem, an iterative method is used. Two parameters are required for that: the maximum number of iterations and the threshold to stop the @@ -735,7 +738,7 @@ these operations are easy to implement in PETSc or similar environment. \section{Convergence results} \label{sec:04} -Let us recall the following result, see~\cite{Saad86}. +Let us recall the following result, see~\cite{Saad86} for further readings. \begin{proposition} \label{prop:saad} Suppose that $A$ is a positive real matrix with symmetric part $M$. Then the residual norm provided at the $m$-th step of GMRES satisfies: @@ -774,13 +777,16 @@ Let $\operatorname{span}(S) = \left \{ {\sum_{i=1}^k \lambda_i v_i \Big| k \in \ $\min_{\alpha \in \mathbb{R}^s} ||b-R\alpha ||_2 = \min_{\alpha \in \mathbb{R}^s} ||b-AS\alpha ||_2$ $\begin{array}{ll} -& = \min_{x \in span\left(S_{k-s}, S_{k-s+1}, \hdots, S_{k-1} \right)} ||b-AS\alpha ||_2\\ -& = \min_{x \in span\left(x_{k-s}, x_{k-s}+1, \hdots, x_{k-1} \right)} ||b-AS\alpha ||_2\\ -& \leqslant \min_{x \in span\left( x_{k-1} \right)} ||b-Ax ||_2\\ -& \leqslant \min_{\lambda \in \mathbb{R}} ||b-\lambda Ax_{k-1} ||_2\\ -& \leqslant ||b-Ax_{k-1}||_2 . +& = \min_{x \in span\left(S_{k-s+1}, S_{k-s+2}, \hdots, S_{k} \right)} ||b-AS\alpha ||_2\\ +& = \min_{x \in span\left(x_{k-s+1}, x_{k-s}+2, \hdots, x_{k} \right)} ||b-AS\alpha ||_2\\ +& \leqslant \min_{x \in span\left( x_{k} \right)} ||b-Ax ||_2\\ +& \leqslant \min_{\lambda \in \mathbb{R}} ||b-\lambda Ax_{k} ||_2\\ +& \leqslant ||b-Ax_{k}||_2\\ +& = ||r_k||_2\\ +& \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{km}{2}} ||r_0||, \end{array}$ \end{itemize} +which concludes the induction and the proof. \end{proof} We can remark that, at each iterate, the residue of the TSIRM algorithm is lower @@ -1026,13 +1032,22 @@ In Table~\ref{tab:04}, some experiments with example ex54 on the Curie architect %%%********************************************************* %%%********************************************************* - -future plan : \\ -- study other kinds of matrices, problems, inner solvers\\ -- test the influence of all parameters\\ -- adaptative number of outer iterations to minimize\\ -- other methods to minimize the residuals?\\ -- implement our solver inside PETSc +A novel two-stage iterative algorithm has been proposed in this article, +in order to accelerate the convergence Krylov iterative methods. +Our TSIRM proposal acts as a merger between Krylov based solvers and +a least-squares minimization step. +The convergence of the method has been proven in some situations, while +experiments up to 16,394 cores have been led to verify that TSIRM runs +5 or 7 times faster than GMRES. + + +For future work, the authors' intention is to investigate +other kinds of matrices, problems, and inner solvers. The +influence of all parameters must be tested too, while +other methods to minimize the residuals must be regarded. +The number of outer iterations to minimize should become +adaptative to improve the overall performances of the proposal. +Finally, this solver will be implemented inside PETSc. % conference papers do not normally have an appendix