X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/GMRES2stage.git/blobdiff_plain/09dec398190bce00e78af232a052b3f5b0684cd1..a1ff3fa3715cb0844074d7927cd852f6e0cb6b3f:/paper.tex diff --git a/paper.tex b/paper.tex index 4b49998..e93737c 100644 --- a/paper.tex +++ b/paper.tex @@ -605,9 +605,14 @@ Krylov subspace iteration methods have increasingly become useful and successful GMRES is one of the most widely used Krylov iterative method for solving sparse and large linear systems. It is developed by Saad and al.~\cite{Saad86} as a generalized method to deal with unsymmetric and non-Hermitian problems, and indefinite symmetric problems too. In its original version called full GMRES, it minimizes the residual over the current Krylov subspace until convergence in at most $n$ iterations, where $n$ is the size of the sparse matrix. It should be noted that full GMRES is too expensive in the case of large matrices since the required orthogonalization process per iteration grows quadratically with the number of iterations. For that reason, in practice GMRES is restarted after each $m\ll n$ iterations to avoid the storage of a large orthonormal basis. However, the convergence behavior of the restarted GMRES, called GMRES($m$), in many cases depends quite critically on the value of $m$~\cite{Huang89}. Therefore in most cases, a preconditioning technique is applied to the restarted GMRES method in order to improve its convergence. -Van der Vorst in~\cite{Vorst94} has proposed variants of the GMRES algorithm in which a different preconditioner is applied in each iteration, so-called GMRESR family of nested methods. In fact, the GMRES method is effectively preconditioned with other iterative schemes, where the iterations of the GMRES method are called outer iterations while the iterations of the preconditioning process referred to as inner iterations. +In order to enhance the robustness of Krylov iterative solvers, some techniques have been proposed allowing the use of different preconditioners, if necessary, within the iteration instead of restarting. Those techniques may lead to considerable savings in CPU time and memory requirements. Van der Vorst in~\cite{Vorst94} has proposed variants of the GMRES algorithm in which a different preconditioner is applied in each iteration, so-called GMRESR family of nested methods. In fact, the GMRES method is effectively preconditioned with other iterative schemes (or GMRES itself), where the iterations of the GMRES method are called outer iterations while the iterations of the preconditioning process referred to as inner iterations. Saad in~\cite{Saad:1993} has proposed FGMRES which is another variant of the GMRES algorithm using a variable preconditioner. In FGMRES the search directions are preconditioned whereas in GMRESR the residuals are preconditioned. However in practice the good preconditioners are those based on direct methods, as ILU preconditioners, which are not easy to parallelize and suffer from the scalability problems on large clusters of thousands of cores. -%FGMRES , GMRESR, two-stage, communication avoiding +Recently, communication-avoiding methods have been developed to reduce the communication overheads in Krylov subspace iterative solvers. On modern computer architectures, communications between processors are much slower than floating-point arithmetic operations on a given processor. Communication-avoiding techniques reduce either communications between processors or data movements between levels of the memory hierarchy, by reformulating the communication-bound kernels (more frequently SpMV kernels) and the orthogonalization operations within the Krylov iterative solver. Different works have studied the communication-avoiding techniques for the GMRES method, so-called CA-GMRES, on multicore processors and multi-GPU machines~\cite{Mohiyuddin2009,Hoemmen2010,Yamazaki2014}. + +Compared to all these works and to all the other works on Krylov iterative +method, the originality of our work is to build a second iteration over a Krylov +iterative method and to minimize the residuals with a least-squares method after +a given number of outer iterations. %%%********************************************************* %%%********************************************************* @@ -868,16 +873,15 @@ Core(TM) i7-3630QM CPU @ 2.40GHz with the version 3.5.1 of PETSc. In Table~\ref{tab:02}, some experiments comparing the solving of the linear -systems obtained with the previous matrices with a GMRES variant and with out 2 -stage algorithm are given. In the second column, it can be noticed that either -GRMES or FGMRES (Flexible GMRES)~\cite{Saad:1993} is used to solve the linear -system. According to the matrices, different preconditioner is used. With -TSIRM, the same solver and the same preconditionner are used. This Table shows -that TSIRM can drastically reduce the number of iterations to reach the -convergence when the number of iterations for the normal GMRES is more or less -greater than 500. In fact this also depends on tow parameters: the number of -iterations to stop GMRES and the number of iterations to perform the -minimization. +systems obtained with the previous matrices with a GMRES variant and with TSIRM +are given. In the second column, it can be noticed that either GRMES or FGMRES +(Flexible GMRES)~\cite{Saad:1993} is used to solve the linear system. According +to the matrices, different preconditioner is used. With TSIRM, the same solver +and the same preconditionner are used. This Table shows that TSIRM can +drastically reduce the number of iterations to reach the convergence when the +number of iterations for the normal GMRES is more or less greater than 500. In +fact this also depends on tow parameters: the number of iterations to stop GMRES +and the number of iterations to perform the minimization. \begin{table}[htbp] @@ -968,7 +972,7 @@ preconditioner in PETSc please consult~\cite{petsc-web-page}. \hline \end{tabular} -\caption{Comparison of FGMRES and TSIRM with FGMRES for example ex15 of PETSc with two preconditioners (mg and sor) with 25,000 components per core on Juqueen (threshold 1e-3, restart=30, s=12), time is expressed in seconds.} +\caption{Comparison of FGMRES and TSIRM with FGMRES for example ex15 of PETSc with two preconditioners (mg and sor) with 25,000 components per core on Juqueen ($\epsilon_{tsirm}=1e-3$, $max\_iter_{kryl}=30$, $s=12$, $max\_iter_{ls}=15$, $\epsilon_{ls}=1e-40$), time is expressed in seconds.} \label{tab:03} \end{center} \end{table*} @@ -1023,7 +1027,7 @@ the number of iterations. So, the overall benefit of using TSIRM is interesting. \begin{tabular}{|r|r|r|r|r|r|r|r|r|} \hline - nb. cores & threshold & \multicolumn{2}{c|}{FGMRES} & \multicolumn{2}{c|}{TSIRM CGLS} & \multicolumn{2}{c|}{TSIRM LSQR} & best gain \\ + nb. cores & $\epsilon_{tsirm}$ & \multicolumn{2}{c|}{FGMRES} & \multicolumn{2}{c|}{TSIRM CGLS} & \multicolumn{2}{c|}{TSIRM LSQR} & best gain \\ \cline{3-8} & & Time & \# Iter. & Time & \# Iter. & Time & \# Iter. & \\\hline \hline 2,048 & 8e-5 & 108.88 & 16,560 & 23.06 & 3,630 & 22.79 & 3,630 & 4.77 \\ @@ -1036,7 +1040,7 @@ the number of iterations. So, the overall benefit of using TSIRM is interesting. \hline \end{tabular} -\caption{Comparison of FGMRES and TSIRM with FGMRES algorithms for ex54 of Petsc (both with the MG preconditioner) with 25,000 components per core on Curie (restart=30, s=12), time is expressed in seconds.} +\caption{Comparison of FGMRES and TSIRM with FGMRES algorithms for ex54 of Petsc (both with the MG preconditioner) with 25,000 components per core on Curie ($max\_iter_{kryl}=30$, $s=12$, $max\_iter_{ls}=15$, $\epsilon_{ls}=1e-40$), time is expressed in seconds.} \label{tab:04} \end{center} \end{table*} @@ -1094,7 +1098,7 @@ taken into account with TSIRM. \hline \end{tabular} -\caption{Comparison of FGMRES and TSIRM with FGMRES for ex54 of Petsc (both with the MG preconditioner) with 204,919,225 components on Curie with different number of cores (restart=30, s=12, threshold 5e-5), time is expressed in seconds.} +\caption{Comparison of FGMRES and TSIRM with FGMRES for ex54 of Petsc (both with the MG preconditioner) with 204,919,225 components on Curie with different number of cores ($\epsilon_{tsirm}=5e-5$, $max\_iter_{kryl}=30$, $s=12$, $max\_iter_{ls}=15$, $\epsilon_{ls}=1e-40$), time is expressed in seconds.} \label{tab:05} \end{center} \end{table*}