X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/GMRES2stage.git/blobdiff_plain/0e974d092288389bf1f266982be7f40dceca2f29..1eec6750087f56dfb7a96d057ca1bfb56a13fc9a:/paper.tex diff --git a/paper.tex b/paper.tex index 00bf7b7..32d18a3 100644 --- a/paper.tex +++ b/paper.tex @@ -601,21 +601,13 @@ is summarized while intended perspectives are provided. %%%********************************************************* \section{Related works} \label{sec:02} -GMRES method is one of the most widely used iterative solvers chosen to deal with the sparsity and the large order of linear systems. It was initially developed by Saad \& al.~\cite{Saad86} to deal with non-symmetric and non-Hermitian problems, and indefinite symmetric problems too. The convergence of the restarted GMRES with preconditioning is faster and more stable than those of some other iterative solvers. +Krylov subspace iteration methods have increasingly become useful and successful techniques for solving linear and nonlinear systems and eigenvalue problems, especially since the increase development of the preconditioners~\cite{}. One reason of the popularity of these methods is their generality, simplicity and efficiency to solve systems of equations arising from very large and complex problems. %A Krylov method is based on a projection process onto a Krylov subspace spanned by vectors and it forms a sequence of approximations by minimizing the residual over the subspace formed~\cite{}. -The next two chapters explore a few methods which are considered currently to be among the -most important iterative techniques available for solving large linear systems. These techniques -are based on projection processes, both orthogonal and oblique, onto Krylov subspaces, which -are subspaces spanned by vectors of the form p(A)v where p is a polynomial. In short, these -techniques approximate A −1 b by p(A)b, where p is a “good” polynomial. This chapter covers -methods derived from, or related to, the Arnoldi orthogonalization. The next chapter covers -methods based on Lanczos biorthogonalization. +GMRES is one of the most widely used Krylov iterative method for solving sparse and large linear systems. It is developed by Saad and al.~\cite{} as a generalized method to deal with unsymmetric and non-Hermitian problems, and indefinite symmetric problems too. In its original version called full GMRES, it minimizes the residual +over the current Krylov subspace until convergence in at most $n$ iterations, where $n$ is the size of the sparse matrix. It should be noted that full GMRES is too expensive in the case of large matrices since the required orthogonalization process per iteration grows quadratically with the number of iterations. For that reason, in practice GMRES is restarted after each $m\ll n$ iterations to avoid the storage of a large orthonormal basis. However, the convergence behavior of the restarted GMRES in many cases depends quite critically on the value of $m$~\cite{}. Therefore in most cases, a preconditioning technique is applied to the restarted GMRES method in order to improve its convergence. -Krylov subspace techniques have inceasingly been viewed as general purpose iterative methods, especially since the popularization of the preconditioning techniqes. +%FGMRES , GMRESR, two-stage, communication avoiding -Preconditioned Krylov-subspace iterations are a key ingredient in -many modern linear solvers, including in solvers that employ support -preconditioners. %%%********************************************************* %%%********************************************************* @@ -1114,11 +1106,25 @@ taken into account with TSIRM. \end{figure} -Concerning the experiments some other remarks are interesting. We can tested -other examples of PETSc (ex29, ex45, ex49). For all these examples, we also -obtained similar gain between GMRES and TSIRM but those examples are not -scalable with many cores. In general, we had some problems with more than -$4,096$ cores. +Concerning the experiments some other remarks are interesting. +\begin{itemize} +\item We can tested other examples of PETSc (ex29, ex45, ex49). For all these + examples, we also obtained similar gain between GMRES and TSIRM but those + examples are not scalable with many cores. In general, we had some problems + with more than $4,096$ cores. +\item We have tested many iterative solvers available in PETSc. In fast, it is + possible to use most of them with TSIRM. From our point of view, the condition + to use a solver inside TSIRM is that the solver must have a restart + feature. More precisely, the solver must support to be stoped and restarted + without decrease its converge. That is why with GMRES we stop it when it is + naturraly restarted (i.e. with $m$ the restart parameter). The Conjugate + Gradient (CG) and all its variants do not have ``restarted'' version in PETSc, + so they are not efficient. They will converge with TSIRM but not quickly + because if we compare a normal CG with a CG for which we stop it each 16 + iterations for example, the normal CG will be for more efficient. Some + restarted CG or CG variant versions exist and may be interested to study in + future works. +\end{itemize} %%%********************************************************* %%%*********************************************************