X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/GMRES2stage.git/blobdiff_plain/21aca9318682e2053f4d46aee187013ab7d4772c..b3eead38d6fdb71b38c446e5c30b295b35dd599e:/paper.tex diff --git a/paper.tex b/paper.tex index 381954b..89487b6 100644 --- a/paper.tex +++ b/paper.tex @@ -351,6 +351,8 @@ \usepackage{algorithm} \usepackage{algpseudocode} +\usepackage{amsmath} +\usepackage{amssymb} \algnewcommand\algorithmicinput{\textbf{Input:}} \algnewcommand\Input{\item[\algorithmicinput]} @@ -553,24 +555,39 @@ Iterative Krylov methods; sparse linear systems; error minimization; PETSC; %à %%%********************************************************* %%%********************************************************* \section{A Krylov two-stage algorithm} - - -\begin{algorithm}[!h] +We propose a two-stage algorithm to solve large sparse linear systems of the form $Ax=b$, where $A\in\mathbb{R}^{n\times n}$ is a sparse and square nonsingular matrix, $x\in\mathbb{R}^n$ is the solution vector and $b\in\mathbb{R}^n$ is the right-hand side. The algorithm is implemented as an inner-outer iteration solver based on iterative Krylov methods. The main key points of our solver are given in Algorithm~\ref{algo:01}. + +The outer iteration is implemented as an iterative Krylov method which minimizes some error function over a Krylov sub-space~\cite{saad96}. At every iteration, the sparse linear system $Ax=b$ is solved iteratively with an iterative method as GMRES method~\cite{saad86} and the Krylov sub-space that we used is spanned by a basis $S$ composed of successive solutions issued from the inner iteration +\begin{equation} + S = \{x^1, x^2, \ldots, x^s\} \text{,~} s\leq n. +\end{equation} +The advantage of such a Krylov sub-space is that we neither need an orthogonal basis nor any synchronization between processors to generate this basis. The algorithm is periodically restarted every $s$ iterations with a new initial guess $x=S\alpha$ which minimizes the residual norm $\|b-Ax\|_2$ over the Krylov sub-space spanned by vectors of $S$, where $\alpha$ is a solution of the normal equations +\begin{equation} + R^TR\alpha = R^Tb, +\end{equation} +which is associated with the least-squares problem +\begin{equation} + \underset{\alpha\in\mathbb{R}^{s}}{min}\|b-R\alpha\|_2 +\label{eq:01} +\end{equation} +such that $R=AS$ is a dense rectangular matrix in $\mathbb{R}^{n\times s}$, $s\ll n$, and $R^T$ denotes the transpose of matrix $R$. We use an iterative method to solve the least-squares problem~(\ref{eq:01}) as CGLS~\cite{hestenes52} or LSQR~\cite{paige82} which is more appropriate that a direct method in the parallel context. + +\begin{algorithm}[t] \caption{A Krylov two-stage algorithm} \begin{algorithmic}[1] -\Input $A$ (sparse matrix), $b$ (right-hand side) -\Output $x$ (solution vector)\vspace{0.2cm} -\State Set the initial guess $x^0$ -\For {$k=1,2,3,\ldots$ until convergence} -\State Solve iteratively $Ax^k=b$ -\State Add vector $x^k$ to Krylov basis $S$ -\If {$k$ mod $s=0$ {\bf and} not convergence} -\State Compute dense matrix $R=AS$ -\State Solve least-squares problem $\|b-R\alpha\|_2$ -\State Compute minimizer $x^k=S\alpha$ -\State Reinitialize Krylov basis $S$ -\EndIf -\EndFor + \Input $A$ (sparse matrix), $b$ (right-hand side) + \Output $x$ (solution vector)\vspace{0.2cm} + \State Set the initial guess $x^0$ + \For {$k=1,2,3,\ldots$ until convergence} + \State Solve iteratively $Ax^k=b$ + \State Add vector $x^k$ to Krylov basis $S$ + \If {$k$ mod $s=0$ {\bf and} not convergence} + \State Compute dense matrix $R=AS$ + \State Solve least-squares problem $\underset{\alpha\in\mathbb{R}^{s}}{min}\|b-R\alpha\|_2$ + \State Compute minimizer $x^k=S\alpha$ + \State Reinitialize Krylov basis $S$ + \EndIf + \EndFor \end{algorithmic} \label{algo:01} \end{algorithm} @@ -634,10 +651,13 @@ Iterative Krylov methods; sparse linear systems; error minimization; PETSC; %à % (used to reserve space for the reference number labels box) \begin{thebibliography}{1} -\bibitem{IEEEhowto:kopka} -%H.~Kopka and P.~W. Daly, \emph{A Guide to \LaTeX}, 3rd~ed.\hskip 1em plus -% 0.5em minus 0.4em\relax Harlow, England: Addison-Wesley, 1999. +\bibitem{saad86} Y.~Saad and M.~H.~Schultz, \emph{GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems}, SIAM Journal on Scientific and Statistical Computing, 7(3):856--869, 1986. + +\bibitem{saad96} Y.~Saad and M.~H.~Schultz, \emph{Iterative Methods for Sparse Linear Systems}, PWS Publishing, New York, 1996. + +\bibitem{hestenes52} M.~R.~Hestenes and E.~Stiefel, \emph{Methods of conjugate gradients for solving linear system}, Journal of Research of National Bureau of Standards, B49:409--436, 1952. +\bibitem{paige82} C.~C.~Paige and A.~M.~Saunders, \emph{LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares}, ACM Trans. Math. Softw. 8(1):43--71, 1982. \end{thebibliography}