X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/GMRES2stage.git/blobdiff_plain/2f9ee779e2f2df4f7b910b9120f01326e0326779..84e15020344b77e5497c4a516cc20b472b2914cd:/paper.tex diff --git a/paper.tex b/paper.tex index 1d4cac0..b08750d 100644 --- a/paper.tex +++ b/paper.tex @@ -748,7 +748,7 @@ the convergence of GMRES($m$) for all $m$ under that assumption regarding $A$. We can now claim that, \begin{proposition} -If $A$ is a positive real matrix, then the TSIRM algorithm is convergent. +If $A$ is a positive real matrix and GMRES($m$) is used as solver, then the TSIRM algorithm is convergent. \end{proposition} \begin{proof} @@ -756,7 +756,7 @@ Let $r_k = b-Ax_k$, where $x_k$ is the approximation of the solution after the $k$-th iterate of TSIRM. We will prove that $r_k \rightarrow 0$ when $k \rightarrow +\infty$. - +Each step of the TSIRM algorithm \end{proof} %%%*********************************************************