X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/GMRES2stage.git/blobdiff_plain/346c1e71da89fda6afd665e560ba9853963dc17a..c315caa973c79514a908f77115d9f95687851199:/paper.tex diff --git a/paper.tex b/paper.tex index d114bdd..6a83f52 100644 --- a/paper.tex +++ b/paper.tex @@ -381,7 +381,7 @@ % affiliations \author{\IEEEauthorblockN{Rapha\"el Couturier\IEEEauthorrefmark{1}, Lilia Ziane Khodja\IEEEauthorrefmark{2}, and Christophe Guyeux\IEEEauthorrefmark{1}} -\IEEEauthorblockA{\IEEEauthorrefmark{1} Femto-ST Institute, University of Franche Comte, France\\ +\IEEEauthorblockA{\IEEEauthorrefmark{1} Femto-ST Institute, University of Franche-Comt\'e, France\\ Email: \{raphael.couturier,christophe.guyeux\}@univ-fcomte.fr} \IEEEauthorblockA{\IEEEauthorrefmark{2} INRIA Bordeaux Sud-Ouest, France\\ Email: lilia.ziane@inria.fr} @@ -564,7 +564,7 @@ gradient and GMRES ones (Generalized Minimal RESidual). However, iterative methods suffer from scalability problems on parallel computing platforms with many processors, due to their need of reduction -operations, and to collective communications to achive matrix-vector +operations, and to collective communications to achieve matrix-vector multiplications. The communications on large clusters with thousands of cores and large sizes of messages can significantly affect the performances of these iterative methods. As a consequence, Krylov subspace iteration methods are often used @@ -1029,13 +1029,22 @@ In Table~\ref{tab:04}, some experiments with example ex54 on the Curie architect %%%********************************************************* %%%********************************************************* - -future plan : \\ -- study other kinds of matrices, problems, inner solvers\\ -- test the influence of all parameters\\ -- adaptative number of outer iterations to minimize\\ -- other methods to minimize the residuals?\\ -- implement our solver inside PETSc +A novel two-stage iterative algorithm has been proposed in this article, +in order to accelerate the convergence Krylov iterative methods. +Our TSIRM proposal acts as a merger between Krylov based solvers and +a least-squares minimization step. +The convergence of the method has been proven in some situations, while +experiments up to 16,394 cores have been led to verify that TSIRM runs +5 or 7 times faster than GMRES. + + +For future work, the authors' intention is to investigate +other kinds of matrices, problems, and inner solvers. The +influence of all parameters must be tested too, while +other methods to minimize the residuals must be regarded. +The number of outer iterations to minimize should become +adaptative to improve the overall performances of the proposal. +Finally, this solver will be implemented inside PETSc. % conference papers do not normally have an appendix