X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/GMRES2stage.git/blobdiff_plain/4c9039f1d8f4a9b3099479e6f78f45f497dc0e59..f2b93de905ad07c8701e6cc195e12da13406d8f3:/paper.tex diff --git a/paper.tex b/paper.tex index 60c7878..ef0321c 100644 --- a/paper.tex +++ b/paper.tex @@ -241,7 +241,7 @@ % quality. -%\usepackage{eqparbox} +\usepackage{eqparbox} % Also of notable interest is Scott Pakin's eqparbox package for creating % (automatically sized) equal width boxes - aka "natural width parboxes". % Available at: @@ -348,11 +348,14 @@ \hyphenation{op-tical net-works semi-conduc-tor} - +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} \usepackage{algorithm} \usepackage{algpseudocode} \usepackage{amsmath} \usepackage{amssymb} +\usepackage{multirow} +\usepackage{graphicx} \algnewcommand\algorithmicinput{\textbf{Input:}} \algnewcommand\Input{\item[\algorithmicinput]} @@ -360,37 +363,32 @@ \algnewcommand\algorithmicoutput{\textbf{Output:}} \algnewcommand\Output{\item[\algorithmicoutput]} - +\newtheorem{proposition}{Proposition} \begin{document} % % paper title % can use linebreaks \\ within to get better formatting as desired -\title{A Krylov two-stage algorithm to solve large sparse linear systems} -%où -%\title{A two-stage algorithm with error minimization to solve large sparse linear systems} -%où -%\title{???} +\title{TSIRM: A Two-Stage Iteration with least-squares Residual Minimization algorithm to solve large sparse linear systems} + + + + % author names and affiliations % use a multiple column layout for up to two different % affiliations -\author{\IEEEauthorblockN{Rapha\"el Couturier} -\IEEEauthorblockA{Femto-ST Institute - DISC Department\\ -Universit\'e de Franche-Comt\'e, IUT de Belfort-Montb\'eliard\\ -19 avenue de Mar\'echal Juin, BP 527 \\ -90016 Belfort Cedex, France\\ -Email: raphael.couturier@univ-fcomte.fr} -\and -\IEEEauthorblockN{Lilia Ziane Khodja} -\IEEEauthorblockA{Centre de Recherche INRIA Bordeaux Sud-Ouest\\ -200 avenue de la Vieille Tour\\ -33405 Talence Cedex, France\\ +\author{\IEEEauthorblockN{Rapha\"el Couturier\IEEEauthorrefmark{1}, Lilia Ziane Khodja\IEEEauthorrefmark{2}, and Christophe Guyeux\IEEEauthorrefmark{1}} +\IEEEauthorblockA{\IEEEauthorrefmark{1} Femto-ST Institute, University of Franche-Comt\'e, France\\ +Email: \{raphael.couturier,christophe.guyeux\}@univ-fcomte.fr} +\IEEEauthorblockA{\IEEEauthorrefmark{2} INRIA Bordeaux Sud-Ouest, France\\ Email: lilia.ziane@inria.fr} } + + % conference papers do not typically use \thanks and this command % is locked out in conference mode. If really needed, such as for % the acknowledgment of grants, issue a \IEEEoverridecommandlockouts @@ -427,11 +425,21 @@ Email: lilia.ziane@inria.fr} \begin{abstract} -%The abstract goes here. DO NOT USE SPECIAL CHARACTERS, SYMBOLS, OR MATH IN YOUR TITLE OR ABSTRACT. +In this article, a two-stage iterative algorithm is proposed to improve the +convergence of Krylov based iterative methods, typically those of GMRES +variants. The principle of the proposed approach is to build an external +iteration over the Krylov method, and to frequently store its current residual +(at each GMRES restart for instance). After a given number of outer iterations, +a least-squares minimization step is applied on the matrix composed by the saved +residuals, in order to compute a better solution and to make new iterations if +required. It is proven that the proposal has the same convergence properties +than the inner embedded method itself. Experiments using up to 16,394 cores +also show that the proposed algorithm runs around 5 or 7 times faster than +GMRES. \end{abstract} \begin{IEEEkeywords} -Iterative Krylov methods; sparse linear systems; error minimization; PETSC; %à voir... +Iterative Krylov methods; sparse linear systems; two stage iteration; least-squares residual minimization; PETSc \end{IEEEkeywords} @@ -538,10 +546,51 @@ Iterative Krylov methods; sparse linear systems; error minimization; PETSC; %à % no \IEEEPARstart % You must have at least 2 lines in the paragraph with the drop letter % (should never be an issue) -Iterative methods are become more attractive than direct ones to solve large sparse linear systems. They are more effective in a parallel context and require less memory and arithmetic operations than direct methods. -%les chercheurs ont développer différentes méthodes exemple de méthode iteratives stationnaires et non stationnaires (krylov) -%problème de convergence et difficulté dans le passage à l'échelle +Iterative methods have recently become more attractive than direct ones to solve +very large sparse linear systems\cite{Saad2003}. They are more efficient in a +parallel context, supporting thousands of cores, and they require less memory +and arithmetic operations than direct methods~\cite{bahicontascoutu}. This is +why new iterative methods are frequently proposed or adapted by researchers, and +the increasing need to solve very large sparse linear systems has triggered the +development of such efficient iterative techniques suitable for parallel +processing. + +Most of the successful iterative methods currently available are based on +so-called ``Krylov subspaces''. They consist in forming a basis of successive +matrix powers multiplied by an initial vector, which can be for instance the +residual. These methods use vectors orthogonality of the Krylov subspace basis +in order to solve linear systems. The most known iterative Krylov subspace +methods are conjugate gradient and GMRES ones (Generalized Minimal RESidual). + + +However, iterative methods suffer from scalability problems on parallel +computing platforms with many processors, due to their need of reduction +operations, and to collective communications to achieve matrix-vector +multiplications. The communications on large clusters with thousands of cores +and large sizes of messages can significantly affect the performances of these +iterative methods. As a consequence, Krylov subspace iteration methods are often +used with preconditioners in practice, to increase their convergence and +accelerate their performances. However, most of the good preconditioners are +not scalable on large clusters. + +In this research work, a two-stage algorithm based on two nested iterations +called inner-outer iterations is proposed. This algorithm consists in solving +the sparse linear system iteratively with a small number of inner iterations, +and restarting the outer step with a new solution minimizing some error +functions over some previous residuals. For further information on two-stage +iteration methods, interested readers are invited to +consult~\cite{Nichols:1973:CTS}. Two-stage algorithms are easy to parallelize on +large clusters. Furthermore, the least-squares minimization technique improves +its convergence and performances. + +The present article is organized as follows. Related works are presented in +Section~\ref{sec:02}. Section~\ref{sec:03} details the two-stage algorithm using +a least-squares residual minimization, while Section~\ref{sec:04} provides +convergence results regarding this method. Section~\ref{sec:05} shows some +experimental results obtained on large clusters using routines of PETSc +toolkit. This research work ends by a conclusion section, in which the proposal +is summarized while intended perspectives are provided. %%%********************************************************* %%%********************************************************* @@ -551,6 +600,7 @@ Iterative methods are become more attractive than direct ones to solve large spa %%%********************************************************* %%%********************************************************* \section{Related works} +\label{sec:02} %Wherever Times is specified, Times Roman or Times New Roman may be used. If neither is available on your system, please use the font closest in appearance to Times. Avoid using bit-mapped fonts if possible. True-Type 1 or Open Type fonts are preferred. Please embed symbol fonts, as well, for math, etc. %%%********************************************************* %%%********************************************************* @@ -559,51 +609,456 @@ Iterative methods are become more attractive than direct ones to solve large spa %%%********************************************************* %%%********************************************************* -\section{A Krylov two-stage algorithm} -We propose a two-stage algorithm to solve large sparse linear systems of the form $Ax=b$, where $A\in\mathbb{R}^{n\times n}$ is a sparse and square nonsingular matrix, $x\in\mathbb{R}^n$ is the solution vector and $b\in\mathbb{R}^n$ is the right-hand side. The algorithm is implemented as an inner-outer iteration solver based on iterative Krylov methods. The main key points of our solver are given in Algorithm~\ref{algo:01}. - -In order to accelerate the convergence, the outer iteration is implemented as an iterative Krylov method which minimizes some error function over a Krylov sub-space~\cite{saad96}. At every iteration, the sparse linear system $Ax=b$ is solved iteratively with an iterative method as GMRES method~\cite{saad86} and the Krylov sub-space that we used is spanned by a basis $S$ composed of successive solutions issued from the inner iteration -\begin{equation} - S = \{x^1, x^2, \ldots, x^s\} \text{,~} s\leq n. -\end{equation} -The advantage of such a Krylov sub-space is that we neither need an orthogonal basis nor any synchronization between processors to generate this basis. The algorithm is periodically restarted every $s$ iterations with a new initial guess $x=S\alpha$ which minimizes the residual norm $\|b-Ax\|_2$ over the Krylov sub-space spanned by vectors of $S$, where $\alpha$ is a solution of the normal equations -\begin{equation} - R^TR\alpha = R^Tb, -\end{equation} -which is associated with the least-squares problem +\section{Two-stage iteration with least-squares residuals minimization algorithm} +\label{sec:03} +A two-stage algorithm is proposed to solve large sparse linear systems of the +form $Ax=b$, where $A\in\mathbb{R}^{n\times n}$ is a sparse and square +nonsingular matrix, $x\in\mathbb{R}^n$ is the solution vector, and +$b\in\mathbb{R}^n$ is the right-hand side. As explained previously, +the algorithm is implemented as an +inner-outer iteration solver based on iterative Krylov methods. The main +key-points of the proposed solver are given in Algorithm~\ref{algo:01}. +It can be summarized as follows: the +inner solver is a Krylov based one. In order to accelerate its convergence, the +outer solver periodically applies a least-squares minimization on the residuals computed by the inner one. %Tsolver which does not required to be changed. + +At each outer iteration, the sparse linear system $Ax=b$ is partially solved +using only $m$ iterations of an iterative method, this latter being initialized +with the last obtained approximation. GMRES method~\cite{Saad86}, or any of its +variants, can potentially be used as inner solver. The current approximation of +the Krylov method is then stored inside a $n \times s$ matrix $S$, which is +composed by the $s$ last solutions that have been computed during the inner +iterations phase. In the remainder, the $i$-th column vector of $S$ will be +denoted by $S_i$. + +At each $s$ iterations, another kind of minimization step is applied in order to +compute a new solution $x$. For that, the previous residuals of $Ax=b$ are computed by +the inner iterations with $(b-AS)$. The minimization of the residuals is obtained by \begin{equation} \underset{\alpha\in\mathbb{R}^{s}}{min}\|b-R\alpha\|_2 \label{eq:01} \end{equation} -such that $R=AS$ is a dense rectangular matrix in $\mathbb{R}^{n\times s}$, $s\ll n$, and $R^T$ denotes the transpose of matrix $R$. We use an iterative method to solve the least-squares problem~(\ref{eq:01}) as CGLS~\cite{hestenes52} or LSQR~\cite{paige82} methods which is more appropriate than a direct method in the parallel context. +with $R=AS$. The new solution $x$ is then computed with $x=S\alpha$. + + +In practice, $R$ is a dense rectangular matrix belonging in $\mathbb{R}^{n\times s}$, +with $s\ll n$. In order to minimize~\eqref{eq:01}, a least-squares method such as +CGLS ~\cite{Hestenes52} or LSQR~\cite{Paige82} is used. Remark that these methods are more +appropriate than a single direct method in a parallel context. + + \begin{algorithm}[t] -\caption{A Krylov two-stage algorithm} +\caption{TSIRM} \begin{algorithmic}[1] \Input $A$ (sparse matrix), $b$ (right-hand side) \Output $x$ (solution vector)\vspace{0.2cm} - \State Set the initial guess $x^0$ - \For {$k=1,2,3,\ldots$ until convergence} - \State Solve iteratively $Ax^k=b$ - \State Add vector $x^k$ to Krylov sub-space basis $S$ - \If {$k$ mod $s=0$ {\bf and} not convergence} - \State Compute dense matrix $R=AS$ - \State Solve least-squares problem $\underset{\alpha\in\mathbb{R}^{s}}{min}\|b-R\alpha\|_2$ - \State Compute minimizer $x^k=S\alpha$ - \State Reinitialize Krylov sub-space basis $S$ + \State Set the initial guess $x_0$ + \For {$k=1,2,3,\ldots$ until convergence (error$<\epsilon_{tsirm}$)} \label{algo:conv} + \State $[x_k,error]=Solve(A,b,x_{k-1},max\_iter_{kryl})$ \label{algo:solve} + \State $S_{k \mod s}=x_k$ \label{algo:store} \Comment{update column (k mod s) of S} + \If {$k \mod s=0$ {\bf and} error$>\epsilon_{kryl}$} + \State $R=AS$ \Comment{compute dense matrix} \label{algo:matrix_mul} + \State $\alpha=Least\_Squares(R,b,max\_iter_{ls})$ \label{algo:} + \State $x_k=S\alpha$ \Comment{compute new solution} \EndIf \EndFor \end{algorithmic} \label{algo:01} \end{algorithm} + +Algorithm~\ref{algo:01} summarizes the principle of the proposed method. The +outer iteration is inside the \emph{for} loop. Line~\ref{algo:solve}, the Krylov +method is called for a maximum of $max\_iter_{kryl}$ iterations. In practice, +we suggest to set this parameter equal to the restart number in the GMRES-like +method. Moreover, a tolerance threshold must be specified for the solver. In +practice, this threshold must be much smaller than the convergence threshold of +the TSIRM algorithm (\emph{i.e.}, $\epsilon_{tsirm}$). We also consider that +after the call of the $Solve$ function, we obtain the vector $x_k$ and the error +which is defined by $||Ax^k-b||_2$. + + Line~\ref{algo:store}, +$S_{k \mod s}=x^k$ consists in copying the solution $x_k$ into the column $k +\mod s$ of $S$. After the minimization, the matrix $S$ is reused with the new +values of the residuals. To solve the minimization problem, an iterative method +is used. Two parameters are required for that: the maximum number of iterations +and the threshold to stop the method. + +Let us summarize the most important parameters of TSIRM: +\begin{itemize} +\item $\epsilon_{tsirm}$: the threshold to stop the TSIRM method; +\item $max\_iter_{kryl}$: the maximum number of iterations for the Krylov method; +\item $s$: the number of outer iterations before applying the minimization step; +\item $max\_iter_{ls}$: the maximum number of iterations for the iterative least-squares method; +\item $\epsilon_{ls}$: the threshold used to stop the least-squares method. +\end{itemize} + + +The parallelization of TSIRM relies on the parallelization of all its +parts. More precisely, except the least-squares step, all the other parts are +obvious to achieve out in parallel. In order to develop a parallel version of +our code, we have chosen to use PETSc~\cite{petsc-web-page}. For +line~\ref{algo:matrix_mul} the matrix-matrix multiplication is implemented and +efficient since the matrix $A$ is sparse and since the matrix $S$ contains few +columns in practice. As explained previously, at least two methods seem to be +interesting to solve the least-squares minimization, CGLS and LSQR. + +In the following we remind the CGLS algorithm. The LSQR method follows more or +less the same principle but it takes more place, so we briefly explain the parallelization of CGLS which is similar to LSQR. + +\begin{algorithm}[t] +\caption{CGLS} +\begin{algorithmic}[1] + \Input $A$ (matrix), $b$ (right-hand side) + \Output $x$ (solution vector)\vspace{0.2cm} + \State Let $x_0$ be an initial approximation + \State $r_0=b-Ax_0$ + \State $p_1=A^Tr_0$ + \State $s_0=p_1$ + \State $\gamma=||s_0||^2_2$ + \For {$k=1,2,3,\ldots$ until convergence ($\gamma<\epsilon_{ls}$)} \label{algo2:conv} + \State $q_k=Ap_k$ + \State $\alpha_k=\gamma/||q_k||^2_2$ + \State $x_k=x_{k-1}+\alpha_kp_k$ + \State $r_k=r_{k-1}-\alpha_kq_k$ + \State $s_k=A^Tr_k$ + \State $\gamma_{old}=\gamma$ + \State $\gamma=||s_k||^2_2$ + \State $\beta_k=\gamma/\gamma_{old}$ + \State $p_{k+1}=s_k+\beta_kp_k$ + \EndFor +\end{algorithmic} +\label{algo:02} +\end{algorithm} + + +In each iteration of CGLS, there is two matrix-vector multiplications and some +classical operations: dot product, norm, multiplication and addition on vectors. All +these operations are easy to implement in PETSc or similar environment. + + + %%%********************************************************* %%%********************************************************* +\section{Convergence results} +\label{sec:04} + +We can now claim that, +\begin{proposition} +\label{prop:saad} +If $A$ is either a definite positive or a positive matrix and GMRES($m$) is used as solver, then the TSIRM algorithm is convergent. + +Furthermore, let $r_k$ be the +$k$-th residue of TSIRM, then +we have the following boundaries: +\begin{itemize} +\item when $A$ is positive: +\begin{equation} +||r_k|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{km}{2}} ||r_0|| , +\end{equation} +where $M$ is the symmetric part of $A$, $\alpha = \lambda_{min}(M)^2$ and $\beta = \lambda_{max}(A^T A)$; +\item when $A$ is positive definite: +\begin{equation} +\|r_k\| \leq \left( 1-\frac{\lambda_{\mathrm{min}}^2(1/2(A^T + A))}{ \lambda_{\mathrm{max}}(A^T A)} \right)^{km/2} \|r_0\|. +\end{equation} +\end{itemize} +%In the general case, where A is not positive definite, we have +%$\|r_n\| \le \inf_{p \in P_n} \|p(A)\| \le \kappa_2(V) \inf_{p \in P_n} \max_{\lambda \in \sigma(A)} |p(\lambda)| \|r_0\|, .$ +\end{proposition} + +\begin{proof} +Let us first recall that the residue is under control when considering the GMRES algorithm on a positive definite matrix, and it is bounded as follows: +\begin{equation*} +\|r_k\| \leq \left( 1-\frac{\lambda_{\mathrm{min}}^2(1/2(A^T + A))}{ \lambda_{\mathrm{max}}(A^T A)} \right)^{k/2} \|r_0\| . +\end{equation*} +Additionally, when $A$ is a positive real matrix with symmetric part $M$, then the residual norm provided at the $m$-th step of GMRES satisfies: +\begin{equation*} +||r_m|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{m}{2}} ||r_0|| , +\end{equation*} +where $\alpha$ and $\beta$ are defined as in Proposition~\ref{prop:saad}, which proves +the convergence of GMRES($m$) for all $m$ under such assumptions regarding $A$. +These well-known results can be found, \emph{e.g.}, in~\cite{Saad86}. + +We will now prove by a mathematical induction that, for each $k \in \mathbb{N}^\ast$, +$||r_k|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{mk}{2}} ||r_0||$ when $A$ is positive, and $\|r_k\| \leq \left( 1-\frac{\lambda_{\mathrm{min}}^2(1/2(A^T + A))}{ \lambda_{\mathrm{max}}(A^T A)} \right)^{km/2} \|r_0\|$ when $A$ is positive definite. + +The base case is obvious, as for $k=1$, the TSIRM algorithm simply consists in applying GMRES($m$) once, leading to a new residual $r_1$ that follows the inductive hypothesis due, to the results recalled above. + +Suppose now that the claim holds for all $m=1, 2, \hdots, k-1$, that is, $\forall m \in \{1,2,\hdots, k-1\}$, $||r_m|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{km}{2}} ||r_0||$ in the positive case, and $\|r_k\| \leq \left( 1-\frac{\lambda_{\mathrm{min}}^2(1/2(A^T + A))}{ \lambda_{\mathrm{max}}(A^T A)} \right)^{km/2} \|r_0\|$ in the definite positive one. +We will show that the statement holds too for $r_k$. Two situations can occur: +\begin{itemize} +\item If $k \not\equiv 0 ~(\textrm{mod}\ m)$, then the TSIRM algorithm consists in executing GMRES once. In that case and by using the inductive hypothesis, we obtain either $||r_k|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{m}{2}} ||r_{k-1}||\leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{km}{2}} ||r_0||$ if $A$ is positive, or $\|r_k\| \leqslant \left( 1-\frac{\lambda_{\mathrm{min}}^2(1/2(A^T + A))}{ \lambda_{\mathrm{max}}(A^T A)} \right)^{m/2} \|r_{k-1}\|$ $\leqslant$ $\left( 1-\frac{\lambda_{\mathrm{min}}^2(1/2(A^T + A))}{ \lambda_{\mathrm{max}}(A^T A)} \right)^{km/2} \|r_{0}\|$ in the positive definite case. +\item Else, the TSIRM algorithm consists in two stages: a first GMRES($m$) execution leads to a temporary $x_k$ whose residue satisfies: +\begin{itemize} +\item $||r_k|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{m}{2}} ||r_{k-1}||\leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{km}{2}} ||r_0||$ in the positive case, +\item $\|r_k\| \leqslant \left( 1-\frac{\lambda_{\mathrm{min}}^2(1/2(A^T + A))}{ \lambda_{\mathrm{max}}(A^T A)} \right)^{m/2} \|r_{k-1}\|$ $\leqslant$ $\left( 1-\frac{\lambda_{\mathrm{min}}^2(1/2(A^T + A))}{ \lambda_{\mathrm{max}}(A^T A)} \right)^{km/2} \|r_{0}\|$ in the positive definite one, +\end{itemize} +and a least squares resolution. +Let $\operatorname{span}(S) = \left \{ {\sum_{i=1}^k \lambda_i v_i \Big| k \in \mathbb{N}, v_i \in S, \lambda _i \in \mathbb{R}} \right \}$ be the linear span of a set of real vectors $S$. So,\\ +$\min_{\alpha \in \mathbb{R}^s} ||b-R\alpha ||_2 = \min_{\alpha \in \mathbb{R}^s} ||b-AS\alpha ||_2$ + +$\begin{array}{ll} +& = \min_{x \in span\left(S_{k-s+1}, S_{k-s+2}, \hdots, S_{k} \right)} ||b-AS\alpha ||_2\\ +& = \min_{x \in span\left(x_{k-s+1}, x_{k-s}+2, \hdots, x_{k} \right)} ||b-AS\alpha ||_2\\ +& \leqslant \min_{x \in span\left( x_{k} \right)} ||b-Ax ||_2\\ +& \leqslant \min_{\lambda \in \mathbb{R}} ||b-\lambda Ax_{k} ||_2\\ +& \leqslant ||b-Ax_{k}||_2\\ +& = ||r_k||_2\\ +& \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{km}{2}} ||r_0||, \textrm{ if $A$ is positive,}\\ +& \leqslant \left( 1-\frac{\lambda_{\mathrm{min}}^2(1/2(A^T + A))}{ \lambda_{\mathrm{max}}(A^T A)} \right)^{km/2} \|r_{0}\|, \textrm{ if $A$ is}\\ +& \textrm{positive definite,} +\end{array}$ +\end{itemize} +which concludes the induction and the proof. +\end{proof} + +%We can remark that, at each iterate, the residue of the TSIRM algorithm is lower +%than the one of the GMRES method. %%%********************************************************* %%%********************************************************* -\section{Experiments using petsc} +\section{Experiments using PETSc} +\label{sec:05} + + +In order to see the influence of our algorithm with only one processor, we first +show a comparison with GMRES or FGMRES and our algorithm. In Table~\ref{tab:01}, +we show the matrices we have used and some of them characteristics. Those +matrices are chosen from the Davis collection of the University of +Florida~\cite{Dav97}. They are matrices arising in real-world applications. For +all the matrices, the name, the field, the number of rows and the number of +nonzero elements are given. + +\begin{table}[htbp] +\begin{center} +\begin{tabular}{|c|c|r|r|r|} +\hline +Matrix name & Field &\# Rows & \# Nonzeros \\\hline \hline +crashbasis & Optimization & 160,000 & 1,750,416 \\ +parabolic\_fem & Comput. fluid dynamics & 525,825 & 2,100,225 \\ +epb3 & Thermal problem & 84,617 & 463,625 \\ +atmosmodj & Comput. fluid dynamics & 1,270,432 & 8,814,880 \\ +bfwa398 & Electromagnetics pb & 398 & 3,678 \\ +torso3 & 2D/3D problem & 259,156 & 4,429,042 \\ +\hline + +\end{tabular} +\caption{Main characteristics of the sparse matrices chosen from the Davis collection} +\label{tab:01} +\end{center} +\end{table} + +The following parameters have been chosen for our experiments. As by default +the restart of GMRES is performed every 30 iterations, we have chosen to stop +the GMRES every 30 iterations (\emph{i.e.} $max\_iter_{kryl}=30$). $s$ is set to 8. CGLS is +chosen to minimize the least-squares problem with the following parameters: +$\epsilon_{ls}=1e-40$ and $max\_iter_{ls}=20$. The external precision is set to +$\epsilon_{tsirm}=1e-10$. Those experiments have been performed on a Intel(R) +Core(TM) i7-3630QM CPU @ 2.40GHz with the version 3.5.1 of PETSc. + + +In Table~\ref{tab:02}, some experiments comparing the solving of the linear +systems obtained with the previous matrices with a GMRES variant and with out 2 +stage algorithm are given. In the second column, it can be noticed that either +GRMES or FGMRES (Flexible GMRES)~\cite{Saad:1993} is used to solve the linear +system. According to the matrices, different preconditioner is used. With +TSIRM, the same solver and the same preconditionner are used. This Table shows +that TSIRM can drastically reduce the number of iterations to reach the +convergence when the number of iterations for the normal GMRES is more or less +greater than 500. In fact this also depends on tow parameters: the number of +iterations to stop GMRES and the number of iterations to perform the +minimization. + + +\begin{table}[htbp] +\begin{center} +\begin{tabular}{|c|c|r|r|r|r|} +\hline + + \multirow{2}{*}{Matrix name} & Solver / & \multicolumn{2}{c|}{GMRES} & \multicolumn{2}{c|}{TSIRM CGLS} \\ +\cline{3-6} + & precond & Time & \# Iter. & Time & \# Iter. \\\hline \hline + +crashbasis & gmres / none & 15.65 & 518 & 14.12 & 450 \\ +parabolic\_fem & gmres / ilu & 1009.94 & 7573 & 401.52 & 2970 \\ +epb3 & fgmres / sor & 8.67 & 600 & 8.21 & 540 \\ +atmosmodj & fgmres / sor & 104.23 & 451 & 88.97 & 366 \\ +bfwa398 & gmres / none & 1.42 & 9612 & 0.28 & 1650 \\ +torso3 & fgmres / sor & 37.70 & 565 & 34.97 & 510 \\ +\hline + +\end{tabular} +\caption{Comparison of (F)GMRES and TSIRM with (F)GMRES in sequential with some matrices, time is expressed in seconds.} +\label{tab:02} +\end{center} +\end{table} + + + + + +In order to perform larger experiments, we have tested some example applications +of PETSc. Those applications are available in the ksp part which is suited for +scalable linear equations solvers: +\begin{itemize} +\item ex15 is an example which solves in parallel an operator using a finite + difference scheme. The diagonal is equal to 4 and 4 extra-diagonals + representing the neighbors in each directions are equal to -1. This example is + used in many physical phenomena, for example, heat and fluid flow, wave + propagation, etc. +\item ex54 is another example based on 2D problem discretized with quadrilateral + finite elements. For this example, the user can define the scaling of material + coefficient in embedded circle called $\alpha$. +\end{itemize} +For more technical details on these applications, interested readers are invited +to read the codes available in the PETSc sources. Those problems have been +chosen because they are scalable with many cores which is not the case of other +problems that we have tested. + +In the following larger experiments are described on two large scale +architectures: Curie and Juqeen. Both these architectures are supercomputer +composed of 80,640 cores for Curie and 458,752 cores for Juqueen. Those machines +are respectively hosted by GENCI in France and Jülich Supercomputing Centre in +Germany. They belongs with other similar architectures of the PRACE initiative ( +Partnership for Advanced Computing in Europe) which aims at proposing high +performance supercomputing architecture to enhance research in Europe. The Curie +architecture is composed of Intel E5-2680 processors at 2.7 GHz with 2Gb memory +by core. The Juqueen architecture is composed of IBM PowerPC A2 at 1.6 GHz with +1Gb memory per core. Both those architecture are equiped with a dedicated high +speed network. + + + +{\bf Description of preconditioners}\\ + +\begin{table*}[htbp] +\begin{center} +\begin{tabular}{|r|r|r|r|r|r|r|r|r|} +\hline + + nb. cores & precond & \multicolumn{2}{c|}{FGMRES} & \multicolumn{2}{c|}{TSIRM CGLS} & \multicolumn{2}{c|}{TSIRM LSQR} & best gain \\ +\cline{3-8} + & & Time & \# Iter. & Time & \# Iter. & Time & \# Iter. & \\\hline \hline + 2,048 & mg & 403.49 & 18,210 & 73.89 & 3,060 & 77.84 & 3,270 & 5.46 \\ + 2,048 & sor & 745.37 & 57,060 & 87.31 & 6,150 & 104.21 & 7,230 & 8.53 \\ + 4,096 & mg & 562.25 & 25,170 & 97.23 & 3,990 & 89.71 & 3,630 & 6.27 \\ + 4,096 & sor & 912.12 & 70,194 & 145.57 & 9,750 & 168.97 & 10,980 & 6.26 \\ + 8,192 & mg & 917.02 & 40,290 & 148.81 & 5,730 & 143.03 & 5,280 & 6.41 \\ + 8,192 & sor & 1,404.53 & 106,530 & 212.55 & 12,990 & 180.97 & 10,470 & 7.76 \\ + 16,384 & mg & 1,430.56 & 63,930 & 237.17 & 8,310 & 244.26 & 7,950 & 6.03 \\ + 16,384 & sor & 2,852.14 & 216,240 & 418.46 & 21,690 & 505.26 & 23,970 & 6.82 \\ +\hline + +\end{tabular} +\caption{Comparison of FGMRES and TSIRM with FGMRES for example ex15 of PETSc with two preconditioners (mg and sor) with 25,000 components per core on Juqueen (threshold 1e-3, restart=30, s=12), time is expressed in seconds.} +\label{tab:03} +\end{center} +\end{table*} + +Table~\ref{tab:03} shows the execution times and the number of iterations of +example ex15 of PETSc on the Juqueen architecture. Different numbers of cores +are studied ranging from 2,048 up-to 16,383. Two preconditioners have been +tested: {\it mg} and {\it sor}. For those experiments, the number of components (or unknowns of the +problems) per core is fixed to 25,000, also called weak scaling. This +number can seem relatively small. In fact, for some applications that need a lot +of memory, the number of components per processor requires sometimes to be +small. + + + +In Table~\ref{tab:03}, we can notice that TSIRM is always faster than FGMRES. The last +column shows the ratio between FGMRES and the best version of TSIRM according to +the minimization procedure: CGLS or LSQR. Even if we have computed the worst +case between CGLS and LSQR, it is clear that TSIRM is always faster than +FGMRES. For this example, the multigrid preconditioner is faster than SOR. The +gain between TSIRM and FGMRES is more or less similar for the two +preconditioners. Looking at the number of iterations to reach the convergence, +it is obvious that TSIRM allows the reduction of the number of iterations. It +should be noticed that for TSIRM, in those experiments, only the iterations of +the Krylov solver are taken into account. Iterations of CGLS or LSQR were not +recorded but they are time-consuming. In general each $max\_iter_{kryl}*s$ which +corresponds to 30*12, there are $max\_iter_{ls}$ which corresponds to 15. + +\begin{figure}[htbp] +\centering + \includegraphics[width=0.45\textwidth]{nb_iter_sec_ex15_juqueen} +\caption{Number of iterations per second with ex15 and the same parameters than in Table~\ref{tab:03} (weak scaling)} +\label{fig:01} +\end{figure} + + +In Figure~\ref{fig:01}, the number of iterations per second corresponding to +Table~\ref{tab:03} is displayed. It can be noticed that the number of +iterations per second of FMGRES is constant whereas it decreases with TSIRM with +both preconditioners. This can be explained by the fact that when the number of +cores increases the time for the least-squares minimization step also increases but, generally, +when the number of cores increases, the number of iterations to reach the +threshold also increases, and, in that case, TSIRM is more efficient to reduce +the number of iterations. So, the overall benefit of using TSIRM is interesting. + + + + + + +\begin{table*}[htbp] +\begin{center} +\begin{tabular}{|r|r|r|r|r|r|r|r|r|} +\hline + + nb. cores & threshold & \multicolumn{2}{c|}{FGMRES} & \multicolumn{2}{c|}{TSIRM CGLS} & \multicolumn{2}{c|}{TSIRM LSQR} & best gain \\ +\cline{3-8} + & & Time & \# Iter. & Time & \# Iter. & Time & \# Iter. & \\\hline \hline + 2,048 & 8e-5 & 108.88 & 16,560 & 23.06 & 3,630 & 22.79 & 3,630 & 4.77 \\ + 2,048 & 6e-5 & 194.01 & 30,270 & 35.50 & 5,430 & 27.74 & 4,350 & 6.99 \\ + 4,096 & 7e-5 & 160.59 & 22,530 & 35.15 & 5,130 & 29.21 & 4,350 & 5.49 \\ + 4,096 & 6e-5 & 249.27 & 35,520 & 52.13 & 7,950 & 39.24 & 5,790 & 6.35 \\ + 8,192 & 6e-5 & 149.54 & 17,280 & 28.68 & 3,810 & 29.05 & 3,990 & 5.21 \\ + 8,192 & 5e-5 & 785.04 & 109,590 & 76.07 & 10,470 & 69.42 & 9,030 & 11.30 \\ + 16,384 & 4e-5 & 718.61 & 86,400 & 98.98 & 10,830 & 131.86 & 14,790 & 7.26 \\ +\hline + +\end{tabular} +\caption{Comparison of FGMRES and TSIRM with FGMRES algorithms for ex54 of Petsc (both with the MG preconditioner) with 25,000 components per core on Curie (restart=30, s=12), time is expressed in seconds.} +\label{tab:04} +\end{center} +\end{table*} + + +In Table~\ref{tab:04}, some experiments with example ex54 on the Curie architecture are reported. + + +\begin{table*}[htbp] +\begin{center} +\begin{tabular}{|r|r|r|r|r|r|r|r|r|r|r|} +\hline + + nb. cores & \multicolumn{2}{c|}{FGMRES} & \multicolumn{2}{c|}{TSIRM CGLS} & \multicolumn{2}{c|}{TSIRM LSQR} & best gain & \multicolumn{3}{c|}{efficiency} \\ +\cline{2-7} \cline{9-11} + & Time & \# Iter. & Time & \# Iter. & Time & \# Iter. & & FGMRES & TS CGLS & TS LSQR\\\hline \hline + 512 & 3,969.69 & 33,120 & 709.57 & 5,790 & 622.76 & 5,070 & 6.37 & 1 & 1 & 1 \\ + 1024 & 1,530.06 & 25,860 & 290.95 & 4,830 & 307.71 & 5,070 & 5.25 & 1.30 & 1.21 & 1.01 \\ + 2048 & 919.62 & 31,470 & 237.52 & 8,040 & 194.22 & 6,510 & 4.73 & 1.08 & .75 & .80\\ + 4096 & 405.60 & 28,380 & 111.67 & 7,590 & 91.72 & 6,510 & 4.42 & 1.22 & .79 & .84 \\ + 8192 & 785.04 & 109,590 & 76.07 & 10,470 & 69.42 & 9,030 & 11.30 & .32 & .58 & .56 \\ + +\hline + +\end{tabular} +\caption{Comparison of FGMRES and TSIRM with FGMRES for ex54 of Petsc (both with the MG preconditioner) with 204,919,225 components on Curie with different number of cores (restart=30, s=12, threshold 5e-5), time is expressed in seconds.} +\label{tab:05} +\end{center} +\end{table*} + +\begin{figure}[htbp] +\centering + \includegraphics[width=0.45\textwidth]{nb_iter_sec_ex54_curie} +\caption{Number of iterations per second with ex54 and the same parameters than in Table~\ref{tab:05} (strong scaling)} +\label{fig:02} +\end{figure} + %%%********************************************************* %%%********************************************************* @@ -612,10 +1067,27 @@ such that $R=AS$ is a dense rectangular matrix in $\mathbb{R}^{n\times s}$, $s\l %%%********************************************************* %%%********************************************************* \section{Conclusion} +\label{sec:06} %The conclusion goes here. this is more of the conclusion %%%********************************************************* %%%********************************************************* +A novel two-stage iterative algorithm has been proposed in this article, +in order to accelerate the convergence Krylov iterative methods. +Our TSIRM proposal acts as a merger between Krylov based solvers and +a least-squares minimization step. +The convergence of the method has been proven in some situations, while +experiments up to 16,394 cores have been led to verify that TSIRM runs +5 or 7 times faster than GMRES. + + +For future work, the authors' intention is to investigate +other kinds of matrices, problems, and inner solvers. The +influence of all parameters must be tested too, while +other methods to minimize the residuals must be regarded. +The number of outer iterations to minimize should become +adaptative to improve the overall performances of the proposal. +Finally, this solver will be implemented inside PETSc. % conference papers do not normally have an appendix @@ -626,10 +1098,10 @@ such that $R=AS$ is a dense rectangular matrix in $\mathbb{R}^{n\times s}$, $s\l %%%********************************************************* %%%********************************************************* \section*{Acknowledgment} -%The authors would like to thank... -%more thanks here -%%%********************************************************* -%%%********************************************************* +This paper is partially funded by the Labex ACTION program (contract +ANR-11-LABX-01-01). We acknowledge PRACE for awarding us access to resources +Curie and Juqueen respectively based in France and Germany. + % trigger a \newpage just before the given reference @@ -647,28 +1119,26 @@ such that $R=AS$ is a dense rectangular matrix in $\mathbb{R}^{n\times s}$, $s\l % http://www.ctan.org/tex-archive/biblio/bibtex/contrib/doc/ % The IEEEtran BibTeX style support page is at: % http://www.michaelshell.org/tex/ieeetran/bibtex/ -%\bibliographystyle{IEEEtran} +\bibliographystyle{IEEEtran} % argument is your BibTeX string definitions and bibliography database(s) -%\bibliography{IEEEabrv,../bib/paper} +\bibliography{biblio} % % manually copy in the resultant .bbl file % set second argument of \begin to the number of references % (used to reserve space for the reference number labels box) -\begin{thebibliography}{1} +%% \begin{thebibliography}{1} -\bibitem{saad86} Y.~Saad and M.~H.~Schultz, \emph{GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems}, SIAM Journal on Scientific and Statistical Computing, 7(3):856--869, 1986. +%% \bibitem{saad86} Y.~Saad and M.~H.~Schultz, \emph{GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems}, SIAM Journal on Scientific and Statistical Computing, 7(3):856--869, 1986. -\bibitem{saad96} Y.~Saad, \emph{Iterative Methods for Sparse Linear Systems}, PWS Publishing, New York, 1996. +%% \bibitem{saad96} Y.~Saad, \emph{Iterative Methods for Sparse Linear Systems}, PWS Publishing, New York, 1996. -\bibitem{hestenes52} M.~R.~Hestenes and E.~Stiefel, \emph{Methods of conjugate gradients for solving linear system}, Journal of Research of National Bureau of Standards, B49:409--436, 1952. +%% \bibitem{hestenes52} M.~R.~Hestenes and E.~Stiefel, \emph{Methods of conjugate gradients for solving linear system}, Journal of Research of National Bureau of Standards, B49:409--436, 1952. -\bibitem{paige82} C.~C.~Paige and A.~M.~Saunders, \emph{LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares}, ACM Trans. Math. Softw. 8(1):43--71, 1982. -\end{thebibliography} +%% \bibitem{paige82} C.~C.~Paige and A.~M.~Saunders, \emph{LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares}, ACM Trans. Math. Softw. 8(1):43--71, 1982. +%% \end{thebibliography} % that's all folks \end{document} - -