X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/GMRES2stage.git/blobdiff_plain/7a7e3e4142880bede1e4c831277adaf5e3773160..dfaf80991de90bf68637d2695dec704697458ffa:/paper.tex diff --git a/paper.tex b/paper.tex index d660010..896ac71 100644 --- a/paper.tex +++ b/paper.tex @@ -380,8 +380,8 @@ % use a multiple column layout for up to two different % affiliations -\author{\IEEEauthorblockN{Rapha\"el Couturier\IEEEauthorrefmark{1}, Lilia Ziane Khodja \IEEEauthorrefmark{2}, and Christophe Guyeux\IEEEauthorrefmark{1}} -\IEEEauthorblockA{\IEEEauthorrefmark{1} Femto-ST Institute, University of Franche Comte, France\\ +\author{\IEEEauthorblockN{Rapha\"el Couturier\IEEEauthorrefmark{1}, Lilia Ziane Khodja\IEEEauthorrefmark{2}, and Christophe Guyeux\IEEEauthorrefmark{1}} +\IEEEauthorblockA{\IEEEauthorrefmark{1} Femto-ST Institute, University of Franche-Comt\'e, France\\ Email: \{raphael.couturier,christophe.guyeux\}@univ-fcomte.fr} \IEEEauthorblockA{\IEEEauthorrefmark{2} INRIA Bordeaux Sud-Ouest, France\\ Email: lilia.ziane@inria.fr} @@ -564,7 +564,7 @@ gradient and GMRES ones (Generalized Minimal RESidual). However, iterative methods suffer from scalability problems on parallel computing platforms with many processors, due to their need of reduction -operations, and to collective communications to achive matrix-vector +operations, and to collective communications to achieve matrix-vector multiplications. The communications on large clusters with thousands of cores and large sizes of messages can significantly affect the performances of these iterative methods. As a consequence, Krylov subspace iteration methods are often used @@ -621,19 +621,21 @@ outer solver periodically applies a least-squares minimization on the residuals At each outer iteration, the sparse linear system $Ax=b$ is partially solved using only $m$ iterations of an iterative method, this latter being initialized with the -best known approximation previously obtained. -GMRES method~\cite{Saad86}, or any of its variants, can be used for instance as an -inner solver. The current approximation of the Krylov method is then stored inside a matrix -$S$ composed by the successive solutions that are computed during inner iterations. - -At each $s$ iterations, the minimization step is applied in order to +last obtained approximation. +GMRES method~\cite{Saad86}, or any of its variants, can potentially be used as +inner solver. The current approximation of the Krylov method is then stored inside a $n \times s$ matrix +$S$, which is composed by the $s$ last solutions that have been computed during +the inner iterations phase. +In the remainder, the $i$-th column vector of $S$ will be denoted by $S_i$. + +At each $s$ iterations, another kind of minimization step is applied in order to compute a new solution $x$. For that, the previous residuals of $Ax=b$ are computed by the inner iterations with $(b-AS)$. The minimization of the residuals is obtained by \begin{equation} \underset{\alpha\in\mathbb{R}^{s}}{min}\|b-R\alpha\|_2 \label{eq:01} \end{equation} -with $R=AS$. Then the new solution $x$ is computed with $x=S\alpha$. +with $R=AS$. The new solution $x$ is then computed with $x=S\alpha$. In practice, $R$ is a dense rectangular matrix belonging in $\mathbb{R}^{n\times s}$, @@ -663,14 +665,15 @@ appropriate than a single direct method in a parallel context. \label{algo:01} \end{algorithm} -Algorithm~\ref{algo:01} summarizes the principle of our method. The outer -iteration is inside the for loop. Line~\ref{algo:solve}, the Krylov method is +Algorithm~\ref{algo:01} summarizes the principle of the proposed method. The outer +iteration is inside the \emph{for} loop. Line~\ref{algo:solve}, the Krylov method is called for a maximum of $max\_iter_{kryl}$ iterations. In practice, we suggest to set this parameter -equals to the restart number of the GMRES-like method. Moreover, a tolerance +equal to the restart number in the GMRES-like method. Moreover, a tolerance threshold must be specified for the solver. In practice, this threshold must be -much smaller than the convergence threshold of the TSIRM algorithm (\emph{i.e.} -$\epsilon_{tsirm}$). Line~\ref{algo:store}, $S_{k~ mod~ s}=x^k$ consists in copying the -solution $x_k$ into the column $k~ mod~ s$ of the matrix $S$. After the +much smaller than the convergence threshold of the TSIRM algorithm (\emph{i.e.}, +$\epsilon_{tsirm}$). Line~\ref{algo:store}, $S_{k \mod s}=x^k$ consists in copying the +solution $x_k$ into the column $k \mod s$ of $S$. +After the minimization, the matrix $S$ is reused with the new values of the residuals. To solve the minimization problem, an iterative method is used. Two parameters are required for that: the maximum number of iterations and the threshold to stop the @@ -686,13 +689,13 @@ Let us summarize the most important parameters of TSIRM: \end{itemize} -The parallelisation of TSIRM relies on the parallelization of all its +The parallelization of TSIRM relies on the parallelization of all its parts. More precisely, except the least-squares step, all the other parts are obvious to achieve out in parallel. In order to develop a parallel version of our code, we have chosen to use PETSc~\cite{petsc-web-page}. For line~\ref{algo:matrix_mul} the matrix-matrix multiplication is implemented and efficient since the matrix $A$ is sparse and since the matrix $S$ contains few -colums in practice. As explained previously, at least two methods seem to be +columns in practice. As explained previously, at least two methods seem to be interesting to solve the least-squares minimization, CGLS and LSQR. In the following we remind the CGLS algorithm. The LSQR method follows more or @@ -735,17 +738,59 @@ these operations are easy to implement in PETSc or similar environment. \section{Convergence results} \label{sec:04} -Let us recall the following result, see~\cite{Saad86}. +Let us recall the following result, see~\cite{Saad86} for further readings. \begin{proposition} +\label{prop:saad} Suppose that $A$ is a positive real matrix with symmetric part $M$. Then the residual norm provided at the $m$-th step of GMRES satisfies: \begin{equation} ||r_m|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{m}{2}} ||r_0|| , \end{equation} -where $\alpha = \lambda_min(M)^2$ and $\beta = \lambda_max(A^T A)$, which proves +where $\alpha = \lambda_{min}(M)^2$ and $\beta = \lambda_{max}(A^T A)$, which proves the convergence of GMRES($m$) for all $m$ under that assumption regarding $A$. \end{proposition} +We can now claim that, +\begin{proposition} +If $A$ is a positive real matrix and GMRES($m$) is used as solver, then the TSIRM algorithm is convergent. Furthermore, +let $r_k$ be the +$k$-th residue of TSIRM, then +we still have: +\begin{equation} +||r_k|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{km}{2}} ||r_0|| , +\end{equation} +where $\alpha$ and $\beta$ are defined as in Proposition~\ref{prop:saad}. +\end{proposition} + +\begin{proof} +We will prove by a mathematical induction that, for each $k \in \mathbb{N}^\ast$, +$||r_k|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{mk}{2}} ||r_0||.$ + +The base case is obvious, as for $k=1$, the TSIRM algorithm simply consists in applying GMRES($m$) once, leading to a new residual $r_1$ which follows the inductive hypothesis due to Proposition~\ref{prop:saad}. + +Suppose now that the claim holds for all $m=1, 2, \hdots, k-1$, that is, $\forall m \in \{1,2,\hdots, k-1\}$, $||r_m|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{km}{2}} ||r_0||$. +We will show that the statement holds too for $r_k$. Two situations can occur: +\begin{itemize} +\item If $k \mod m \neq 0$, then the TSIRM algorithm consists in executing GMRES once. In that case, we obtain $||r_k|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{m}{2}} ||r_{k-1}||\leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{km}{2}} ||r_0||$ by the inductive hypothesis. +\item Else, the TSIRM algorithm consists in two stages: a first GMRES($m$) execution leads to a temporary $x_k$ whose residue satisfies $||r_k|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{m}{2}} ||r_{k-1}||\leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{km}{2}} ||r_0||$, and a least squares resolution. +Let $\operatorname{span}(S) = \left \{ {\sum_{i=1}^k \lambda_i v_i \Big| k \in \mathbb{N}, v_i \in S, \lambda _i \in \mathbb{R}} \right \}$ be the linear span of a set of real vectors $S$. So,\\ +$\min_{\alpha \in \mathbb{R}^s} ||b-R\alpha ||_2 = \min_{\alpha \in \mathbb{R}^s} ||b-AS\alpha ||_2$ + +$\begin{array}{ll} +& = \min_{x \in span\left(S_{k-s+1}, S_{k-s+2}, \hdots, S_{k} \right)} ||b-AS\alpha ||_2\\ +& = \min_{x \in span\left(x_{k-s+1}, x_{k-s}+2, \hdots, x_{k} \right)} ||b-AS\alpha ||_2\\ +& \leqslant \min_{x \in span\left( x_{k} \right)} ||b-Ax ||_2\\ +& \leqslant \min_{\lambda \in \mathbb{R}} ||b-\lambda Ax_{k} ||_2\\ +& \leqslant ||b-Ax_{k}||_2\\ +& = ||r_k||_2\\ +& \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{km}{2}} ||r_0||, +\end{array}$ +\end{itemize} +which concludes the induction and the proof. +\end{proof} + +We can remark that, at each iterate, the residue of the TSIRM algorithm is lower +than the one of the GMRES method. %%%********************************************************* %%%********************************************************* @@ -817,7 +862,7 @@ torso3 & fgmres / sor & 37.70 & 565 & 34.97 & 510 \\ \hline \end{tabular} -\caption{Comparison of (F)GMRES and 2 stage (F)GMRES algorithms in sequential with some matrices, time is expressed in seconds.} +\caption{Comparison of (F)GMRES and TSIRM with (F)GMRES in sequential with some matrices, time is expressed in seconds.} \label{tab:02} \end{center} \end{table} @@ -846,7 +891,7 @@ chosen because they are scalable with many cores which is not the case of other In the following larger experiments are described on two large scale architectures: Curie and Juqeen... {\bf description...}\\ -{\bf Description of preconditioners} +{\bf Description of preconditioners}\\ \begin{table*}[htbp] \begin{center} @@ -867,27 +912,27 @@ In the following larger experiments are described on two large scale architectur \hline \end{tabular} -\caption{Comparison of FGMRES and TSIRM with FGMRES for example ex15 of PETSc with two preconditioner (mg and sor) with 25,000 components per core on Juqueen (threshold 1e-3, restart=30, s=12), time is expressed in seconds.} +\caption{Comparison of FGMRES and TSIRM with FGMRES for example ex15 of PETSc with two preconditioners (mg and sor) with 25,000 components per core on Juqueen (threshold 1e-3, restart=30, s=12), time is expressed in seconds.} \label{tab:03} \end{center} \end{table*} Table~\ref{tab:03} shows the execution times and the number of iterations of -example ex15 of PETSc on the Juqueen architecture. Differents number of cores -are studied rangin from 2,048 upto 16,383. Two preconditioners have been -tested. For those experiments, the number of components (or unknown of the -problems) per processor is fixed to 25,000, also called weak scaling. This +example ex15 of PETSc on the Juqueen architecture. Different numbers of cores +are studied ranging from 2,048 up-to 16,383. Two preconditioners have been +tested: {\it mg} and {\it sor}. For those experiments, the number of components (or unknowns of the +problems) per core is fixed to 25,000, also called weak scaling. This number can seem relatively small. In fact, for some applications that need a lot of memory, the number of components per processor requires sometimes to be small. -In this Table, we can notice that TSIRM is always faster than FGMRES. The last +In Table~\ref{tab:03}, we can notice that TSIRM is always faster than FGMRES. The last column shows the ratio between FGMRES and the best version of TSIRM according to the minimization procedure: CGLS or LSQR. Even if we have computed the worst -case between CGLS and LSQR, it is clear that TSIRM is alsways faster than -FGMRES. For this example, the multigrid preconditionner is faster than SOR. The +case between CGLS and LSQR, it is clear that TSIRM is always faster than +FGMRES. For this example, the multigrid preconditioner is faster than SOR. The gain between TSIRM and FGMRES is more or less similar for the two preconditioners. Looking at the number of iterations to reach the convergence, it is obvious that TSIRM allows the reduction of the number of iterations. It @@ -905,10 +950,10 @@ corresponds to 30*12, there are $max\_iter_{ls}$ which corresponds to 15. In Figure~\ref{fig:01}, the number of iterations per second corresponding to -Table~\ref{tab:01} is displayed. It can be noticed that the number of -iterations per second of FMGRES is constant whereas it decrease with TSIRM with -both preconditioner. This can be explained by the fact that when the number of -core increases the time for the minimization step also increases but, generally, +Table~\ref{tab:03} is displayed. It can be noticed that the number of +iterations per second of FMGRES is constant whereas it decreases with TSIRM with +both preconditioners. This can be explained by the fact that when the number of +cores increases the time for the least-squares minimization step also increases but, generally, when the number of cores increases, the number of iterations to reach the threshold also increases, and, in that case, TSIRM is more efficient to reduce the number of iterations. So, the overall benefit of using TSIRM is interesting. @@ -923,7 +968,7 @@ the number of iterations. So, the overall benefit of using TSIRM is interesting. \begin{tabular}{|r|r|r|r|r|r|r|r|r|} \hline - nb. cores & threshold & \multicolumn{2}{c|}{GMRES} & \multicolumn{2}{c|}{TSIRM CGLS} & \multicolumn{2}{c|}{TSIRM LSQR} & best gain \\ + nb. cores & threshold & \multicolumn{2}{c|}{FGMRES} & \multicolumn{2}{c|}{TSIRM CGLS} & \multicolumn{2}{c|}{TSIRM LSQR} & best gain \\ \cline{3-8} & & Time & \# Iter. & Time & \# Iter. & Time & \# Iter. & \\\hline \hline 2,048 & 8e-5 & 108.88 & 16,560 & 23.06 & 3,630 & 22.79 & 3,630 & 4.77 \\ @@ -936,7 +981,7 @@ the number of iterations. So, the overall benefit of using TSIRM is interesting. \hline \end{tabular} -\caption{Comparison of FGMRES and 2 stage FGMRES algorithms for ex54 of Petsc (both with the MG preconditioner) with 25000 components per core on Curie (restart=30, s=12), time is expressed in seconds.} +\caption{Comparison of FGMRES and TSIRM with FGMRES algorithms for ex54 of Petsc (both with the MG preconditioner) with 25,000 components per core on Curie (restart=30, s=12), time is expressed in seconds.} \label{tab:04} \end{center} \end{table*} @@ -950,9 +995,9 @@ In Table~\ref{tab:04}, some experiments with example ex54 on the Curie architect \begin{tabular}{|r|r|r|r|r|r|r|r|r|r|r|} \hline - nb. cores & \multicolumn{2}{c|}{GMRES} & \multicolumn{2}{c|}{TSIRM CGLS} & \multicolumn{2}{c|}{TSIRM LSQR} & best gain & \multicolumn{3}{c|}{efficiency} \\ + nb. cores & \multicolumn{2}{c|}{FGMRES} & \multicolumn{2}{c|}{TSIRM CGLS} & \multicolumn{2}{c|}{TSIRM LSQR} & best gain & \multicolumn{3}{c|}{efficiency} \\ \cline{2-7} \cline{9-11} - & Time & \# Iter. & Time & \# Iter. & Time & \# Iter. & & GMRES & TS CGLS & TS LSQR\\\hline \hline + & Time & \# Iter. & Time & \# Iter. & Time & \# Iter. & & FGMRES & TS CGLS & TS LSQR\\\hline \hline 512 & 3,969.69 & 33,120 & 709.57 & 5,790 & 622.76 & 5,070 & 6.37 & 1 & 1 & 1 \\ 1024 & 1,530.06 & 25,860 & 290.95 & 4,830 & 307.71 & 5,070 & 5.25 & 1.30 & 1.21 & 1.01 \\ 2048 & 919.62 & 31,470 & 237.52 & 8,040 & 194.22 & 6,510 & 4.73 & 1.08 & .75 & .80\\ @@ -962,7 +1007,7 @@ In Table~\ref{tab:04}, some experiments with example ex54 on the Curie architect \hline \end{tabular} -\caption{Comparison of FGMRES and 2 stage FGMRES algorithms for ex54 of Petsc (both with the MG preconditioner) with 204,919,225 components on Curie with different number of cores (restart=30, s=12, threshol 5e-5), time is expressed in seconds.} +\caption{Comparison of FGMRES and TSIRM with FGMRES for ex54 of Petsc (both with the MG preconditioner) with 204,919,225 components on Curie with different number of cores (restart=30, s=12, threshold 5e-5), time is expressed in seconds.} \label{tab:05} \end{center} \end{table*} @@ -987,13 +1032,22 @@ In Table~\ref{tab:04}, some experiments with example ex54 on the Curie architect %%%********************************************************* %%%********************************************************* +A novel two-stage iterative algorithm has been proposed in this article, +in order to accelerate the convergence Krylov iterative methods. +Our TSIRM proposal acts as a merger between Krylov based solvers and +a least-squares minimization step. +The convergence of the method has been proven in some situations, while +experiments up to 16,394 cores have been led to verify that TSIRM runs +5 or 7 times faster than GMRES. -future plan : \\ -- study other kinds of matrices, problems, inner solvers\\ -- test the influence of all the parameters\\ -- adaptative number of outer iterations to minimize\\ -- other methods to minimize the residuals?\\ -- implement our solver inside PETSc + +For future work, the authors' intention is to investigate +other kinds of matrices, problems, and inner solvers. The +influence of all parameters must be tested too, while +other methods to minimize the residuals must be regarded. +The number of outer iterations to minimize should become +adaptative to improve the overall performances of the proposal. +Finally, this solver will be implemented inside PETSc. % conference papers do not normally have an appendix @@ -1005,7 +1059,7 @@ future plan : \\ %%%********************************************************* \section*{Acknowledgment} This paper is partially funded by the Labex ACTION program (contract -ANR-11-LABX-01-01). We acknowledge PRACE for awarding us access to resource +ANR-11-LABX-01-01). We acknowledge PRACE for awarding us access to resources Curie and Juqueen respectively based in France and Germany. @@ -1048,5 +1102,3 @@ Curie and Juqueen respectively based in France and Germany. % that's all folks \end{document} - -