X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/GMRES2stage.git/blobdiff_plain/7a7e3e4142880bede1e4c831277adaf5e3773160..e9ef8e49b713cba35e5f44d77ad7c9cb1385c804:/paper.tex diff --git a/paper.tex b/paper.tex index d660010..0290628 100644 --- a/paper.tex +++ b/paper.tex @@ -364,6 +364,7 @@ \algnewcommand\Output{\item[\algorithmicoutput]} \newtheorem{proposition}{Proposition} +\newtheorem{proof}{Proof} \begin{document} % @@ -380,7 +381,7 @@ % use a multiple column layout for up to two different % affiliations -\author{\IEEEauthorblockN{Rapha\"el Couturier\IEEEauthorrefmark{1}, Lilia Ziane Khodja \IEEEauthorrefmark{2}, and Christophe Guyeux\IEEEauthorrefmark{1}} +\author{\IEEEauthorblockN{Rapha\"el Couturier\IEEEauthorrefmark{1}, Lilia Ziane Khodja\IEEEauthorrefmark{2}, and Christophe Guyeux\IEEEauthorrefmark{1}} \IEEEauthorblockA{\IEEEauthorrefmark{1} Femto-ST Institute, University of Franche Comte, France\\ Email: \{raphael.couturier,christophe.guyeux\}@univ-fcomte.fr} \IEEEauthorblockA{\IEEEauthorrefmark{2} INRIA Bordeaux Sud-Ouest, France\\ @@ -741,11 +742,22 @@ Suppose that $A$ is a positive real matrix with symmetric part $M$. Then the res \begin{equation} ||r_m|| \leqslant \left(1-\dfrac{\alpha}{\beta}\right)^{\frac{m}{2}} ||r_0|| , \end{equation} -where $\alpha = \lambda_min(M)^2$ and $\beta = \lambda_max(A^T A)$, which proves +where $\alpha = \lambda_{min}(M)^2$ and $\beta = \lambda_{max}(A^T A)$, which proves the convergence of GMRES($m$) for all $m$ under that assumption regarding $A$. \end{proposition} +We can now claim that, +\begin{proposition} +If $A$ is a positive real matrix and GMRES($m$) is used as solver, then the TSIRM algorithm is convergent. +\end{proposition} + +\begin{proof} +Let $r_k = b-Ax_k$, where $x_k$ is the approximation of the solution after the +$k$-th iterate of TSIRM. +We will prove that $r_k \rightarrow 0$ when $k \rightarrow +\infty$. +Each step of the TSIRM algorithm +\end{proof} %%%********************************************************* %%%********************************************************* @@ -1048,5 +1060,3 @@ Curie and Juqueen respectively based in France and Germany. % that's all folks \end{document} - -