X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/GMRES2stage.git/blobdiff_plain/7ff6342cfd0d2fa0e5df79322a88117ece68880e..4f4061fdadd89f690136f185d51a8c9e6fb2f50c:/paper.tex diff --git a/paper.tex b/paper.tex index 36298aa..c66f8c7 100644 --- a/paper.tex +++ b/paper.tex @@ -668,7 +668,8 @@ reused with the new values of the residuals. In order to see the influence of our algorithm with only one processor, we first show a comparison with the standard version of GMRES and our algorithm. In table~\ref{tab:01}, we show the matrices we have used and some of them -characteristics. +characteristics. For all the matrices, the name, the field, the number of rows +and the number of nonzero elements is given. \begin{table} \begin{center} @@ -689,7 +690,12 @@ torso3 & 2D/3D problem & 259,156 & 4,429,042 \\ \end{center} \end{table} - +In table~\ref{tab:02}, some experiments comparing the sovling of the linear +systems obtained with the previous matrices with a GMRES variant and with out 2 +stage algorithm are given. In the second column, it can be noticed that either +gmres or fgmres is used to solve the linear system. According to the matrices, +different preconditioner is used. With the 2 stage algorithm, the same +solver and the same preconditionner is used. \begin{table} @@ -701,7 +707,7 @@ torso3 & 2D/3D problem & 259,156 & 4,429,042 \\ & precond & Time & \# Iter. & Time & \# Iter. \\\hline \hline crashbasis & gmres / none & 15.65 & 518 & 14.12 & 450 \\ -parabolic\_fem & gmres / ilu & 2152 & ?? & 724 & ?? \\ +parabolic\_fem & gmres / ilu & 1009.94 & 7573 & 401.52 & 2970 \\ epb3 & fgmres / sor & 8.67 & 600 & 8.21 & 540 \\ atmosmodj & fgmres / sor & 104.23 & 451 & 88.97 & 366 \\ bfwa398 & gmres / none & 1.42 & 9612 & 0.28 & 1650 \\