X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/GMRES2stage.git/blobdiff_plain/80c1614695ad0d65eb7a93f7483aa9e133406670..7d6625e2b26c8e17c8cf8fafc8fbed964dda513a:/paper.tex diff --git a/paper.tex b/paper.tex index 3b19b2d..ceffa3d 100644 --- a/paper.tex +++ b/paper.tex @@ -745,9 +745,7 @@ where $\alpha = \lambda_min(M)^2$ and $\beta = \lambda_max(A^T A)$, which proves the convergence of GMRES($m$) for all $m$ under that assumption regarding $A$. \end{proposition} -<<<<<<< HEAD -======= We can now claim that, \begin{proposition} If $A$ is a positive real matrix and GMRES($m$) is used as solver, then the TSIRM algorithm is convergent. @@ -758,9 +756,16 @@ Let $r_k = b-Ax_k$, where $x_k$ is the approximation of the solution after the $k$-th iterate of TSIRM. We will prove that $r_k \rightarrow 0$ when $k \rightarrow +\infty$. -Each step of the TSIRM algorithm +Each step of the TSIRM algorithm \\ +$\min_{\alpha \in \mathbb{R}^s} ||b-R\alpha ||_2 = \min_{\alpha \in \mathbb{R}^s} ||b-AS\alpha ||_2$ + +$\begin{array}{ll} +& = \min_{x \in Vect\left(x_0, x_1, \hdots, x_{k-1} \right)} ||b-AS\alpha ||_2\\ +& \leqslant \min_{x \in Vect\left( S_{k-1} \right)} ||b-Ax ||_2\\ +& \leqslant ||b-Ax_{k-1}|| +\end{array}$ \end{proof} ->>>>>>> 84e15020344b77e5497c4a516cc20b472b2914cd + %%%********************************************************* %%%********************************************************* @@ -1064,4 +1069,3 @@ Curie and Juqueen respectively based in France and Germany. % that's all folks \end{document} -