X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/GMRES2stage.git/blobdiff_plain/860c8942588be4c114424b511f6a525063e42087..0ce078ad281a8fea579c18b18c6b26444978cc87:/paper.tex diff --git a/paper.tex b/paper.tex index b0ec851..14ad53c 100644 --- a/paper.tex +++ b/paper.tex @@ -648,15 +648,15 @@ appropriate than a single direct method in a parallel context. \begin{algorithmic}[1] \Input $A$ (sparse matrix), $b$ (right-hand side) \Output $x$ (solution vector)\vspace{0.2cm} - \State Set the initial guess $x^0$ + \State Set the initial guess $x_0$ \For {$k=1,2,3,\ldots$ until convergence (error$<\epsilon_{tsirm}$)} \label{algo:conv} - \State $x^k=Solve(A,b,x^{k-1},max\_iter_{kryl})$ \label{algo:solve} + \State $x_k=Solve(A,b,x_{k-1},max\_iter_{kryl})$ \label{algo:solve} \State retrieve error - \State $S_{k \mod s}=x^k$ \label{algo:store} + \State $S_{k \mod s}=x_k$ \label{algo:store} \If {$k \mod s=0$ {\bf and} error$>\epsilon_{kryl}$} \State $R=AS$ \Comment{compute dense matrix} \label{algo:matrix_mul} - \State $\alpha=Solve\_Least\_Squares(R,b,max\_iter_{ls})$ \label{algo:} - \State $x^k=S\alpha$ \Comment{compute new solution} + \State $\alpha=Least\_Squares(R,b,max\_iter_{ls})$ \label{algo:} + \State $x_k=S\alpha$ \Comment{compute new solution} \EndIf \EndFor \end{algorithmic}