X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/GMRES2stage.git/blobdiff_plain/b458d2ac5114a8e5c165514271869193a6c9388e..1082caa290770800e8a7f6815ed153931cd93460:/paper.tex diff --git a/paper.tex b/paper.tex index a848958..185bbf3 100644 --- a/paper.tex +++ b/paper.tex @@ -348,6 +348,18 @@ \hyphenation{op-tical net-works semi-conduc-tor} + +\usepackage{algorithm} +\usepackage{algpseudocode} + +\algnewcommand\algorithmicinput{\textbf{Input:}} +\algnewcommand\Input{\item[\algorithmicinput]} + +\algnewcommand\algorithmicoutput{\textbf{Output:}} +\algnewcommand\Output{\item[\algorithmicoutput]} + + + \begin{document} % % paper title @@ -541,6 +553,28 @@ Iterative Krylov methods; sparse linear systems; error minimization; PETSC; %à %%%********************************************************* %%%********************************************************* \section{A Krylov two-stage algorithm} +We propose a two-stage algorithm to solve large sparse linear systems of the form $Ax=b$ based on iterative Krylov sub-space methods. + + +\begin{algorithm}[!h] +\caption{A Krylov two-stage algorithm} +\begin{algorithmic}[1] + \Input $A$ (sparse matrix), $b$ (right-hand side) + \Output $x$ (solution vector)\vspace{0.2cm} + \State Set the initial guess $x^0$ + \For {$k=1,2,3,\ldots$ until convergence} + \State Solve iteratively $Ax^k=b$ + \State Add vector $x^k$ to Krylov basis $S$ + \If {$k$ mod $s=0$ {\bf and} not convergence} + \State Compute dense matrix $R=AS$ + \State Solve least-squares problem $\|b-R\alpha\|_2$ + \State Compute minimizer $x^k=S\alpha$ + \State Reinitialize Krylov basis $S$ + \EndIf + \EndFor +\end{algorithmic} +\label{algo:01} +\end{algorithm} %%%********************************************************* %%%*********************************************************