X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/GMRES2stage.git/blobdiff_plain/d1ede5c6359bdeda060c8b0336f5db31e226a285..176107a654cef5a1e3e376218e5da656e515453b:/paper.tex diff --git a/paper.tex b/paper.tex index e626ba0..18340f6 100644 --- a/paper.tex +++ b/paper.tex @@ -615,7 +615,7 @@ points of our solver are given in Algorithm~\ref{algo:01}. In order to accelerate the convergence, the outer iteration periodically applies a least-square minimization on the residuals computed by the inner solver. The -inner solver is a Krylov based solver which does not required to be changed. +inner solver is based on a Krylov method which does not require to be changed. At each outer iteration, the sparse linear system $Ax=b$ is solved, only for $m$ iterations, using an iterative method restarting with the previous solution. For @@ -768,9 +768,8 @@ the restart of GMRES is performed every 30 iterations, we have chosen to stop the GMRES every 30 iterations, $max\_iter_{kryl}=30$). $s$ is set to 8. CGLS is chosen to minimize the least-squares problem with the following parameters: $\epsilon_{ls}=1e-40$ and $max\_iter_{ls}=20$. The external precision is set to -$1e-10$ (i.e. ). Those experiments -have been performed on a Intel(R) Core(TM) i7-3630QM CPU @ 2.40GHz with the -version 3.5.1 of PETSc. +$\epsilon_{tsarm}=1e-10$. Those experiments have been performed on a Intel(R) +Core(TM) i7-3630QM CPU @ 2.40GHz with the version 3.5.1 of PETSc. In Table~\ref{tab:02}, some experiments comparing the solving of the linear