X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/GMRES2stage.git/blobdiff_plain/d65f95b09b265340cfa954cb4056329a00f9f3dd..7d1a785e0f85113eb0bc24d6b4421a95d200d9ce:/paper.tex diff --git a/paper.tex b/paper.tex index 01dc6cc..693edae 100644 --- a/paper.tex +++ b/paper.tex @@ -623,7 +623,7 @@ cases depends quite critically on the $m$ value~\cite{Huang89}. Therefore in most cases, a preconditioning technique is applied to the restarted GMRES method in order to improve its convergence. -To enhance the robustness of Krylov iterative solvers, some techniques have been proposed allowing the use of different preconditioners, if necessary, within the iteration instead of restarting. Those techniques may lead to considerable savings in CPU time and memory requirements. Van der Vorst in~\cite{Vorst94} has for instance proposed variants of the GMRES algorithm in which a different preconditioner is applied in each iteration, so-called GMRESR family of nested methods. In fact, the GMRES method is effectively preconditioned with other iterative schemes (or GMRES itself), where the iterations of the GMRES method are called outer iterations while the iterations of the preconditioning process referred to as inner iterations. Saad in~\cite{Saad:1993} has proposed FGMRES which is another variant of the GMRES algorithm using a variable preconditioner. In FGMRES the search directions are preconditioned whereas in GMRESR the residuals are preconditioned. However in practice the good preconditioners are those based on direct methods, as ILU preconditioners, which are not easy to parallelize and suffer from the scalability problems on large clusters of thousands of cores. +To enhance the robustness of Krylov iterative solvers, some techniques have been proposed allowing the use of different preconditioners, if necessary, within the iteration instead of restarting. Those techniques may lead to considerable savings in CPU time and memory requirements. Van der Vorst in~\cite{Vorst94} has for instance proposed variants of the GMRES algorithm in which a different preconditioner is applied in each iteration, leading to the so-called GMRESR family of nested methods. In fact, the GMRES method is effectively preconditioned with other iterative schemes (or GMRES itself), where the iterations of the GMRES method are called outer iterations while the iterations of the preconditioning process is referred to as inner iterations. Saad in~\cite{Saad:1993} has proposed FGMRES which is another variant of the GMRES algorithm using a variable preconditioner. In FGMRES the search directions are preconditioned whereas in GMRESR the residuals are preconditioned. However, in practice, good preconditioners are those based on direct methods, as ILU preconditioners, which are not easy to parallelize and suffer from the scalability problems on large clusters of thousands of cores. Recently, communication-avoiding methods have been developed to reduce the communication overheads in Krylov subspace iterative solvers. On modern computer architectures, communications between processors are much slower than floating-point arithmetic operations on a given processor. Communication-avoiding techniques reduce either communications between processors or data movements between levels of the memory hierarchy, by reformulating the communication-bound kernels (more frequently SpMV kernels) and the orthogonalization operations within the Krylov iterative solver. Different works have studied the communication-avoiding techniques for the GMRES method, so-called CA-GMRES, on multicore processors and multi-GPU machines~\cite{Mohiyuddin2009,Hoemmen2010,Yamazaki2014}. @@ -705,7 +705,7 @@ method. Moreover, a tolerance threshold must be specified for the solver. In practice, this threshold must be much smaller than the convergence threshold of the TSIRM algorithm (\emph{i.e.}, $\epsilon_{tsirm}$). We also consider that after the call of the $Solve$ function, we obtain the vector $x_k$ and the -$error$ which is defined by $||Ax_k-b||_2$. +$error$, which is defined by $||Ax_k-b||_2$. Line~\ref{algo:store}, $S_{k \mod s}=x_k$ consists in copying the solution $x_k$ into the column $k \mod s$ of $S$. After the minimization, the matrix