X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/GMRES2stage.git/blobdiff_plain/e22868ab5dffa57e6db9bb8d6c9c21ae84411e2a..e9ef8e49b713cba35e5f44d77ad7c9cb1385c804:/paper.tex diff --git a/paper.tex b/paper.tex index e512018..0290628 100644 --- a/paper.tex +++ b/paper.tex @@ -748,10 +748,15 @@ the convergence of GMRES($m$) for all $m$ under that assumption regarding $A$. We can now claim that, \begin{proposition} -If $A$ is a positive real matrix, then the TSIRM algorithm is convergent. +If $A$ is a positive real matrix and GMRES($m$) is used as solver, then the TSIRM algorithm is convergent. \end{proposition} \begin{proof} +Let $r_k = b-Ax_k$, where $x_k$ is the approximation of the solution after the +$k$-th iterate of TSIRM. +We will prove that $r_k \rightarrow 0$ when $k \rightarrow +\infty$. + +Each step of the TSIRM algorithm \end{proof} %%%********************************************************* @@ -1055,4 +1060,3 @@ Curie and Juqueen respectively based in France and Germany. % that's all folks \end{document} -