X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/GMRES2stage.git/blobdiff_plain/e73422d5f48b17486f47f19b98698ec34d487873..21aca9318682e2053f4d46aee187013ab7d4772c:/paper.tex diff --git a/paper.tex b/paper.tex index 8232b7e..381954b 100644 --- a/paper.tex +++ b/paper.tex @@ -348,6 +348,18 @@ \hyphenation{op-tical net-works semi-conduc-tor} + +\usepackage{algorithm} +\usepackage{algpseudocode} + +\algnewcommand\algorithmicinput{\textbf{Input:}} +\algnewcommand\Input{\item[\algorithmicinput]} + +\algnewcommand\algorithmicoutput{\textbf{Output:}} +\algnewcommand\Output{\item[\algorithmicoutput]} + + + \begin{document} % % paper title @@ -417,7 +429,7 @@ Email: lilia.ziane@inria.fr} \end{abstract} \begin{IEEEkeywords} -Krylov iterative methods; sparse linear systems; error minimization; PETSC; %à voir... +Iterative Krylov methods; sparse linear systems; error minimization; PETSC; %à voir... \end{IEEEkeywords} @@ -541,6 +553,27 @@ Krylov iterative methods; sparse linear systems; error minimization; PETSC; %à %%%********************************************************* %%%********************************************************* \section{A Krylov two-stage algorithm} + + +\begin{algorithm}[!h] +\caption{A Krylov two-stage algorithm} +\begin{algorithmic}[1] +\Input $A$ (sparse matrix), $b$ (right-hand side) +\Output $x$ (solution vector)\vspace{0.2cm} +\State Set the initial guess $x^0$ +\For {$k=1,2,3,\ldots$ until convergence} +\State Solve iteratively $Ax^k=b$ +\State Add vector $x^k$ to Krylov basis $S$ +\If {$k$ mod $s=0$ {\bf and} not convergence} +\State Compute dense matrix $R=AS$ +\State Solve least-squares problem $\|b-R\alpha\|_2$ +\State Compute minimizer $x^k=S\alpha$ +\State Reinitialize Krylov basis $S$ +\EndIf +\EndFor +\end{algorithmic} +\label{algo:01} +\end{algorithm} %%%********************************************************* %%%*********************************************************