X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/GMRES2stage.git/blobdiff_plain/fc8e999ae15f3227ad6bfa96711b70236c809e77..fd0a7d17543c653d442bccd0c7ee035764e83650:/paper.tex diff --git a/paper.tex b/paper.tex index c559dda..e23ccc2 100644 --- a/paper.tex +++ b/paper.tex @@ -582,11 +582,11 @@ performances. The present paper is organized as follows. In Section~\ref{sec:02} some related works are presented. Section~\ref{sec:03} presents our two-stage algorithm using -a least-square residual minimization. Section~\ref{sec:04} describes some -convergence results on this method. - Section~\ref{sec:05} shows some +a least-square residual minimization. Section~\ref{sec:04} describes some +convergence results on this method. Section~\ref{sec:05} shows some experimental results obtained on large clusters of our algorithm using routines -of PETSc toolkit. +of PETSc toolkit. Finally Section~\ref{sec:06} concludes and gives some +perspectives. %%%********************************************************* %%%********************************************************* @@ -684,7 +684,7 @@ table~\ref{tab:01}, we show the matrices we have used and some of them characteristics. For all the matrices, the name, the field, the number of rows and the number of nonzero elements is given. -\begin{table} +\begin{table*} \begin{center} \begin{tabular}{|c|c|r|r|r|} \hline @@ -701,7 +701,7 @@ torso3 & 2D/3D problem & 259,156 & 4,429,042 \\ \caption{Main characteristics of the sparse matrices chosen from the Davis collection} \label{tab:01} \end{center} -\end{table} +\end{table*} The following parameters have been chosen for our experiments. As by default the restart of GMRES is performed every 30 iterations, we have chosen to stop @@ -810,7 +810,7 @@ Larger experiments .... %%%********************************************************* %%%********************************************************* \section{Conclusion} -\label{sec:05} +\label{sec:06} %The conclusion goes here. this is more of the conclusion %%%********************************************************* %%%*********************************************************