From: Christophe Guyeux <guyeux@gmail.com>
Date: Fri, 10 Oct 2014 12:51:15 +0000 (+0200)
Subject: i8n de la preuve
X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/GMRES2stage.git/commitdiff_plain/0501cb56e1c4b2968b9f435cc1f53e348a8bd434

i8n de la preuve
---

diff --git a/paper.tex b/paper.tex
index 4e40730..4a8bc4d 100644
--- a/paper.tex
+++ b/paper.tex
@@ -757,13 +757,16 @@ $k$-th iterate of TSIRM.
 We will prove that $r_k \rightarrow 0$ when $k \rightarrow +\infty$.
 
 Each step of the TSIRM algorithm \\
+
+Let $\operatorname{span}(S) = \left \{ {\sum_{i=1}^k \lambda_i v_i \Big| k \in \mathbb{N}, v_i \in S, \lambda _i \in \mathbb{R}} \right \}$ be the linear span of a set of vectors $S$. So,\\
 $\min_{\alpha \in \mathbb{R}^s} ||b-R\alpha ||_2 = \min_{\alpha \in \mathbb{R}^s} ||b-AS\alpha ||_2$
 
 $\begin{array}{ll}
-& = \min_{x \in Vect\left(S_{k-s}, S_{k-s+1}, \hdots, S_{k-1} \right)} ||b-AS\alpha ||_2\\
-& = \min_{x \in Vect\left(x_{k-s}, x_{k-s}+1, \hdots, x_{k-1} \right)} ||b-AS\alpha ||_2\\
-& \leqslant \min_{x \in Vect\left( x_{k-1} \right)} ||b-Ax ||_2\\
-& \leqslant ||b-Ax_{k-1}||
+& = \min_{x \in span\left(S_{k-s}, S_{k-s+1}, \hdots, S_{k-1} \right)} ||b-AS\alpha ||_2\\
+& = \min_{x \in span\left(x_{k-s}, x_{k-s}+1, \hdots, x_{k-1} \right)} ||b-AS\alpha ||_2\\
+& \leqslant \min_{x \in span\left( x_{k-1} \right)} ||b-Ax ||_2\\
+& \leqslant \min_{\lambda \in \mathbb{R}} ||b-\lambda Ax_{k-1} ||_2\\
+& \leqslant ||b-Ax_{k-1}||_2 .
 \end{array}$
 \end{proof}
 
@@ -1069,4 +1072,3 @@ Curie and Juqueen respectively based in France and Germany.
 
 % that's all folks
 \end{document}
-