From: lilia Date: Mon, 18 Aug 2014 11:25:16 +0000 (+0200) Subject: v0 X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/GMRES2stage.git/commitdiff_plain/103f48c15495d519e9a9f39a9ba06430c7ad1016 v0 --- diff --git a/paper.tex b/paper.tex index a848958..312270c 100644 --- a/paper.tex +++ b/paper.tex @@ -348,6 +348,18 @@ \hyphenation{op-tical net-works semi-conduc-tor} + +\usepackage{algorithm} +\usepackage{algpseudocode} + +\algnewcommand\algorithmicinput{\textbf{Input:}} +\algnewcommand\Input{\item[\algorithmicinput]} + +\algnewcommand\algorithmicoutput{\textbf{Output:}} +\algnewcommand\Output{\item[\algorithmicoutput]} + + + \begin{document} % % paper title @@ -541,6 +553,47 @@ Iterative Krylov methods; sparse linear systems; error minimization; PETSC; %à %%%********************************************************* %%%********************************************************* \section{A Krylov two-stage algorithm} + + +\begin{algorithm}[!t] +\caption{A Krylov two-stage algorithm} +\begin{algorithmic}[1] +\Input $A_\ell$ (sparse sub-matrix), $B_\ell$ (right-hand side sub-vector) +\Output $X_\ell$ (solution sub-vector)\vspace{0.2cm} +\State Load $A_\ell$, $B_\ell$ +\State Set the initial guess $x^0$ +\State Set the minimizer $\tilde{x}^0=x^0$ +\For {$k=1,2,3,\ldots$ until the global convergence} +\State Restart with $x^0=\tilde{x}^{k-1}$: +\For {$j=1,2,\ldots,s$} +\State \label{line7}Inner iteration solver: \Call{InnerSolver}{$x^0$, $j$} +\State Construct basis $S$: add column vector $X_\ell^j$ to the matrix $S_\ell^k$ +\State Exchange local values of $X_\ell^j$ with the neighboring clusters +\State Compute dense matrix $R$: $R_\ell^{k,j}=\sum^L_{i=1}A_{\ell i}X_i^j$ +\EndFor +\State \label{line12}Minimization $\|b-R\alpha\|_2$: \Call{UpdateMinimizer}{$S_\ell$, $R$, $b$, $k$} +\State Local solution of linear system $Ax=b$: $X_\ell^k=\tilde{X}_\ell^k$ +\State Exchange the local minimizer $\tilde{X}_\ell^k$ with the neighboring clusters +\EndFor + +\Statex + +\Function {InnerSolver}{$x^0$, $j$} +\State Compute local right-hand side $Y_\ell = B_\ell - \sum^L_{\substack{m=1\\m\neq \ell}}A_{\ell m}X_m^0$ +\State Solving local splitting $A_{\ell \ell}X_\ell^j=Y_\ell$ using parallel GMRES method, such that $X_\ell^0$ is the initial guess +\State \Return $X_\ell^j$ +\EndFunction + +\Statex + +\Function {UpdateMinimizer}{$S_\ell$, $R$, $b$, $k$} +\State Solving normal equations $(R^k)^TR^k\alpha^k=(R^k)^Tb$ in parallel by $L$ clusters using parallel CGNR method +\State Compute local minimizer $\tilde{X}_\ell^k=S_\ell^k\alpha^k$ +\State \Return $\tilde{X}_\ell^k$ +\EndFunction +\end{algorithmic} +\label{algo:01} +\end{algorithm} %%%********************************************************* %%%*********************************************************