From: lilia Date: Fri, 10 Oct 2014 11:59:15 +0000 (+0200) Subject: mMerge branch 'master' of ssh://bilbo.iut-bm.univ-fcomte.fr/GMRES2stage X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/GMRES2stage.git/commitdiff_plain/8aeef74d04b37c2601749676e053a538ba3785cd?ds=sidebyside mMerge branch 'master' of ssh://bilbo.iut-bm.univ-fcomte.fr/GMRES2stage Conflicts: paper.tex --- 8aeef74d04b37c2601749676e053a538ba3785cd diff --cc paper.tex index bf9e767,b08750d..f1becbd --- a/paper.tex +++ b/paper.tex @@@ -745,7 -746,18 +745,22 @@@ where $\alpha = \lambda_min(M)^2$ and $ the convergence of GMRES($m$) for all $m$ under that assumption regarding $A$. \end{proposition} ++<<<<<<< HEAD + ++======= + We can now claim that, + \begin{proposition} + If $A$ is a positive real matrix and GMRES($m$) is used as solver, then the TSIRM algorithm is convergent. + \end{proposition} + + \begin{proof} + Let $r_k = b-Ax_k$, where $x_k$ is the approximation of the solution after the + $k$-th iterate of TSIRM. + We will prove that $r_k \rightarrow 0$ when $k \rightarrow +\infty$. + + Each step of the TSIRM algorithm + \end{proof} ++>>>>>>> 84e15020344b77e5497c4a516cc20b472b2914cd %%%********************************************************* %%%*********************************************************