From: lilia Date: Fri, 10 Oct 2014 11:59:15 +0000 (+0200) Subject: mMerge branch 'master' of ssh://bilbo.iut-bm.univ-fcomte.fr/GMRES2stage X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/GMRES2stage.git/commitdiff_plain/8aeef74d04b37c2601749676e053a538ba3785cd?hp=acead508c1f820b919aa203c78668e5e645cc9b8 mMerge branch 'master' of ssh://bilbo.iut-bm.univ-fcomte.fr/GMRES2stage Conflicts: paper.tex --- diff --git a/paper.tex b/paper.tex index bf9e767..f1becbd 100644 --- a/paper.tex +++ b/paper.tex @@ -745,7 +745,22 @@ where $\alpha = \lambda_min(M)^2$ and $\beta = \lambda_max(A^T A)$, which proves the convergence of GMRES($m$) for all $m$ under that assumption regarding $A$. \end{proposition} +<<<<<<< HEAD +======= +We can now claim that, +\begin{proposition} +If $A$ is a positive real matrix and GMRES($m$) is used as solver, then the TSIRM algorithm is convergent. +\end{proposition} + +\begin{proof} +Let $r_k = b-Ax_k$, where $x_k$ is the approximation of the solution after the +$k$-th iterate of TSIRM. +We will prove that $r_k \rightarrow 0$ when $k \rightarrow +\infty$. + +Each step of the TSIRM algorithm +\end{proof} +>>>>>>> 84e15020344b77e5497c4a516cc20b472b2914cd %%%********************************************************* %%%*********************************************************