From: raphael couturier Date: Fri, 10 Oct 2014 19:36:23 +0000 (+0200) Subject: new X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/GMRES2stage.git/commitdiff_plain/ea64cb6b221dd87ee5567d67d8063a023f43330a new --- diff --git a/biblio.bib b/biblio.bib index 0e9f3ed..ec1c7e7 100644 --- a/biblio.bib +++ b/biblio.bib @@ -62,3 +62,11 @@ howpublished = {\url{http://www.mcs.anl.gov/petsc}}, year = {2014} } + + +@misc{Dav97, + author = {Davis, T. and Hu, Y.}, + title = {The {U}niversity of {F}lorida Sparse Matrix Collection}, + year = {1997}, + note = {Digest, \url{http://www.cise.ufl.edu/research/sparse/matrices/}}, + } \ No newline at end of file diff --git a/paper.tex b/paper.tex index 16beac7..25f1393 100644 --- a/paper.tex +++ b/paper.tex @@ -652,7 +652,7 @@ appropriate than a single direct method in a parallel context. \State Set the initial guess $x_0$ \For {$k=1,2,3,\ldots$ until convergence (error$<\epsilon_{tsirm}$)} \label{algo:conv} \State $[x_k,error]=Solve(A,b,x_{k-1},max\_iter_{kryl})$ \label{algo:solve} - \State $S_{k \mod s}=x_k$ \label{algo:store} + \State $S_{k \mod s}=x_k$ \label{algo:store} \Comment{update column (k mod s) of S} \If {$k \mod s=0$ {\bf and} error$>\epsilon_{kryl}$} \State $R=AS$ \Comment{compute dense matrix} \label{algo:matrix_mul} \State $\alpha=Least\_Squares(R,b,max\_iter_{ls})$ \label{algo:} @@ -800,10 +800,12 @@ than the one of the GMRES method. In order to see the influence of our algorithm with only one processor, we first -show a comparison with the standard version of GMRES and our algorithm. In -Table~\ref{tab:01}, we show the matrices we have used and some of them -characteristics. For all the matrices, the name, the field, the number of rows -and the number of nonzero elements are given. +show a comparison with GMRES or FGMRES and our algorithm. In Table~\ref{tab:01}, +we show the matrices we have used and some of them characteristics. Those +matrices are chosen from the Davis collection of the University of +Florida~\cite{Dav97}. They are matrices arising in real-world applications. For +all the matrices, the name, the field, the number of rows and the number of +nonzero elements are given. \begin{table}[htbp] \begin{center}