From 7d6625e2b26c8e17c8cf8fafc8fbed964dda513a Mon Sep 17 00:00:00 2001
From: Christophe Guyeux <guyeux@gmail.com>
Date: Fri, 10 Oct 2014 14:15:30 +0200
Subject: [PATCH] =?utf8?q?Avanc=C3=A9es=20dans=20la=20preuve?=
MIME-Version: 1.0
Content-Type: text/plain; charset=utf8
Content-Transfer-Encoding: 8bit

---
 paper.tex | 14 +++++++++-----
 1 file changed, 9 insertions(+), 5 deletions(-)

diff --git a/paper.tex b/paper.tex
index 3b19b2d..ceffa3d 100644
--- a/paper.tex
+++ b/paper.tex
@@ -745,9 +745,7 @@ where $\alpha = \lambda_min(M)^2$ and $\beta = \lambda_max(A^T A)$, which proves
 the convergence of GMRES($m$) for all $m$ under that assumption regarding $A$.
 \end{proposition}
 
-<<<<<<< HEAD
 
-=======
 We can now claim that,
 \begin{proposition}
 If $A$ is a positive real matrix and GMRES($m$) is used as solver, then the TSIRM algorithm is convergent.
@@ -758,9 +756,16 @@ Let $r_k = b-Ax_k$, where $x_k$ is the approximation of the solution after the
 $k$-th iterate of TSIRM.
 We will prove that $r_k \rightarrow 0$ when $k \rightarrow +\infty$.
 
-Each step of the TSIRM algorithm 
+Each step of the TSIRM algorithm \\
+$\min_{\alpha \in \mathbb{R}^s} ||b-R\alpha ||_2 = \min_{\alpha \in \mathbb{R}^s} ||b-AS\alpha ||_2$
+
+$\begin{array}{ll}
+& = \min_{x \in Vect\left(x_0, x_1, \hdots, x_{k-1} \right)} ||b-AS\alpha ||_2\\
+& \leqslant \min_{x \in Vect\left( S_{k-1} \right)} ||b-Ax ||_2\\
+& \leqslant ||b-Ax_{k-1}||
+\end{array}$
 \end{proof}
->>>>>>> 84e15020344b77e5497c4a516cc20b472b2914cd
+
 
 %%%*********************************************************
 %%%*********************************************************
@@ -1064,4 +1069,3 @@ Curie and Juqueen respectively based in France and Germany.
 % that's all folks
 \end{document}
 
-
-- 
2.39.5