From 7d6625e2b26c8e17c8cf8fafc8fbed964dda513a Mon Sep 17 00:00:00 2001 From: Christophe Guyeux Date: Fri, 10 Oct 2014 14:15:30 +0200 Subject: [PATCH] =?utf8?q?Avanc=C3=A9es=20dans=20la=20preuve?= MIME-Version: 1.0 Content-Type: text/plain; charset=utf8 Content-Transfer-Encoding: 8bit --- paper.tex | 14 +++++++++----- 1 file changed, 9 insertions(+), 5 deletions(-) diff --git a/paper.tex b/paper.tex index 3b19b2d..ceffa3d 100644 --- a/paper.tex +++ b/paper.tex @@ -745,9 +745,7 @@ where $\alpha = \lambda_min(M)^2$ and $\beta = \lambda_max(A^T A)$, which proves the convergence of GMRES($m$) for all $m$ under that assumption regarding $A$. \end{proposition} -<<<<<<< HEAD -======= We can now claim that, \begin{proposition} If $A$ is a positive real matrix and GMRES($m$) is used as solver, then the TSIRM algorithm is convergent. @@ -758,9 +756,16 @@ Let $r_k = b-Ax_k$, where $x_k$ is the approximation of the solution after the $k$-th iterate of TSIRM. We will prove that $r_k \rightarrow 0$ when $k \rightarrow +\infty$. -Each step of the TSIRM algorithm +Each step of the TSIRM algorithm \\ +$\min_{\alpha \in \mathbb{R}^s} ||b-R\alpha ||_2 = \min_{\alpha \in \mathbb{R}^s} ||b-AS\alpha ||_2$ + +$\begin{array}{ll} +& = \min_{x \in Vect\left(x_0, x_1, \hdots, x_{k-1} \right)} ||b-AS\alpha ||_2\\ +& \leqslant \min_{x \in Vect\left( S_{k-1} \right)} ||b-Ax ||_2\\ +& \leqslant ||b-Ax_{k-1}|| +\end{array}$ \end{proof} ->>>>>>> 84e15020344b77e5497c4a516cc20b472b2914cd + %%%********************************************************* %%%********************************************************* @@ -1064,4 +1069,3 @@ Curie and Juqueen respectively based in France and Germany. % that's all folks \end{document} - -- 2.39.5