From e9ef8e49b713cba35e5f44d77ad7c9cb1385c804 Mon Sep 17 00:00:00 2001
From: Christophe Guyeux <guyeux@gmail.com>
Date: Fri, 10 Oct 2014 13:52:39 +0200
Subject: [PATCH] Petites modifs

---
 paper.tex | 4 ++--
 1 file changed, 2 insertions(+), 2 deletions(-)

diff --git a/paper.tex b/paper.tex
index e927821..0290628 100644
--- a/paper.tex
+++ b/paper.tex
@@ -748,7 +748,7 @@ the convergence of GMRES($m$) for all $m$ under that assumption regarding $A$.
 
 We can now claim that,
 \begin{proposition}
-If $A$ is a positive real matrix, then the TSIRM algorithm is convergent.
+If $A$ is a positive real matrix and GMRES($m$) is used as solver, then the TSIRM algorithm is convergent.
 \end{proposition}
 
 \begin{proof}
@@ -756,7 +756,7 @@ Let $r_k = b-Ax_k$, where $x_k$ is the approximation of the solution after the
 $k$-th iterate of TSIRM.
 We will prove that $r_k \rightarrow 0$ when $k \rightarrow +\infty$.
 
-
+Each step of the TSIRM algorithm 
 \end{proof}
 
 %%%*********************************************************
-- 
2.39.5