From e9ef8e49b713cba35e5f44d77ad7c9cb1385c804 Mon Sep 17 00:00:00 2001 From: Christophe Guyeux Date: Fri, 10 Oct 2014 13:52:39 +0200 Subject: [PATCH 1/1] Petites modifs --- paper.tex | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/paper.tex b/paper.tex index e927821..0290628 100644 --- a/paper.tex +++ b/paper.tex @@ -748,7 +748,7 @@ the convergence of GMRES($m$) for all $m$ under that assumption regarding $A$. We can now claim that, \begin{proposition} -If $A$ is a positive real matrix, then the TSIRM algorithm is convergent. +If $A$ is a positive real matrix and GMRES($m$) is used as solver, then the TSIRM algorithm is convergent. \end{proposition} \begin{proof} @@ -756,7 +756,7 @@ Let $r_k = b-Ax_k$, where $x_k$ is the approximation of the solution after the $k$-th iterate of TSIRM. We will prove that $r_k \rightarrow 0$ when $k \rightarrow +\infty$. - +Each step of the TSIRM algorithm \end{proof} %%%********************************************************* -- 2.39.5