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Abstract In this paper, we aim at exploiting the power computing of a graphics
processing unit (GPU) cluster for solving large sparse linear systems. We implement
the parallel algorithm of the generalized minimal residual iterative method using the
Compute Unified Device Architecture programming language and the MPI parallel
environment. The experiments show that a GPU cluster is more efficient than a CPU
cluster. In order to optimize the performances, we use a compressed storage format
for the sparse vectors and the hypergraph partitioning. These solutions improve the
spatial and temporal localization of the shared data between the computing nodes of
the GPU cluster.

Keywords Parallel GMRES · Cluster of GPUs · Communication reduction

1 Introduction

Large sparse linear systems arise in most numerical scientific or industrial simulations.
They model numerous complex problems in different areas of applications such as
mathematics, engineering, biology or physics [3]. However, solving these systems of
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equations is often an expensive operation in terms of execution time and memory space
consumption. Indeed, the linear systems arising in most applications are very large
and have many zero coefficients, and this sparse nature leads to irregular accesses to
load the nonzero coefficients from the memory.

Parallel computing has become a key issue for solving sparse linear systems of large
sizes. This is due to the computing power and the storage capacity of the current parallel
computers as well as the availability of different parallel programming languages
and environments such as the MPI communication standard. Nowadays, graphics
processing units (GPUs) are the most commonly used hardware accelerators in high
performance computing. They are equipped with a massively parallel architecture
allowing them to compute faster than CPUs. However, the parallel computers equipped
with GPUs introduce new programming difficulties to adapt parallel algorithms to their
architectures.

In this paper, we use the GMRES iterative method for solving large sparse linear
systems on a cluster of GPUs. The parallel algorithm of this method is implemented
using the CUDA programming language for the GPUs and the MPI parallel environ-
ment to distribute the computations between the different GPU nodes of the cluster.
Particularly, we focus on improving the performances of the parallel sparse matrix–
vector multiplication. Indeed, this operation is not only very time-consuming but it
also requires communications between the GPU nodes. These communications are
needed to build the global vector involved in the parallel sparse matrix–vector multi-
plication. It should be noted that a communication between two GPU nodes involves
data transfers between the GPU and CPU memories in the same node and the MPI
communications between the CPUs of the GPU nodes. For performance purposes, we
propose to use a compressed storage format to reduce the size of the vectors to be
exchanged between the GPU nodes and a hypergraph partitioning of the sparse matrix
to reduce the total communication volume.

The present paper is organized as follows. In Sect. 2 some previous works about
solving sparse linear systems on GPUs are presented. In Sect. 3 is given a general
overview of the GPU architectures, followed by the GMRES method in Sect. 4. In
Sect. 5, the main key points of the parallel implementation of the GMRES method on
a GPU cluster are described. Finally, in Sect. 6 is presented the performance improve-
ments of the parallel GMRES algorithm on a GPU cluster.

2 Related work

Numerous works have shown the efficiency of GPUs for solving sparse linear systems
compared to their CPUs counterpart. Different iterative methods are implemented on
one GPU, for example Jacobi and Gauss-Seidel in [23], conjugate and biconjugate
gradients in [7,19,33,34] and GMRES in [14,20,25,32]. In addition, some iterative
methods are implemented on shared memory multi-GPUs machines as [1,10,18,22].
A limited set of studies are devoted to the parallel implementation of the iterative
methods on distributed memory GPU clusters as [4,21,26].

Traditionally, the parallel iterative algorithms do not often scale well on GPU clus-
ters due to the significant cost of the communications between the computing nodes.
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Some authors have already studied how to reduce these communications. In [11],
the authors used a hypergraph partitioning as a preprocessing to the parallel con-
jugate gradient algorithm in order to reduce the inter-GPU communications over a
GPU cluster. The sequential hypergraph partitioning method provided by the PaToH
tool [9] is used because of the small sizes of the sparse symmetric linear systems to
be solved. In [5], a compression and decompression technique is proposed to reduce
the communication overheads. This technique is performed on the shared vectors to
be exchanged between the computing nodes. In [13], the authors studied the impact of
asynchronism on parallel iterative algorithms on local GPU clusters. Asynchronous
communication primitives suppress some synchronization barriers and allow overlap
of communication and computation. In [12], a communication reduction method is
used for implementing finite element methods (FEM) on GPU clusters. This method
firstly uses the reverse Cuthill–McKee reordering to reduce the total communication
volume. In addition, the performances of the parallel FEM algorithm are improved by
overlapping the communication with computation.

Our main contribution in this work is to show the difficulties of implementing
the GMRES method to solve sparse linear systems on a cluster of GPUs. First, we
show the main key points of the parallel GMRES algorithm on a GPU cluster. Then,
we discuss the improvements of the algorithm which are mainly performed on the
sparse matrix–vector multiplication when the matrix is distributed on several GPUs.
In fact, on a cluster of GPUs the influence of the communications is greater than on
clusters of CPUs due to the CPU/GPU communications between two GPUs that are
not on the same machines. We propose to perform a hypergraph partitioning on the
problem to be solved, then we reorder the matrix columns according to the partitioning
scheme, and we use a compressed format to store the vectors in order to minimize the
communication overheads between two GPUs.

3 GPU architectures

A GPU is a hardware accelerator for high performance computing. Its hardware archi-
tecture is composed of hundreds of cores organized in several blocks called streaming
multiprocessors. It is also equipped with a memory hierarchy. It has a set of registers
and a private read-write local memory per core, a fast shared memory, read-only con-
stant and texture caches per multiprocessor and a read-write global memory shared by
all its multiprocessors. The new architectures (Fermi, Kepler, etc) have also L1 and
L2 caches to improve the accesses to the global memory.

NVIDIA has released the Compute Unified Device Architecture platform (CUDA)
[28] which provides a high-level GPGPU-based programming language (general-
purpose computing on GPUs), allowing to program GPUs for general-purpose compu-
tations. In CUDA programming environment, all data-parallel and compute intensive
portions of an application running on the CPU are off-loaded onto the GPU. Indeed,
an application developed in CUDA is a program written in C language (or Fortran)
with a minimal set of extensions to define the parallel functions to be executed by the
GPU, called kernels. We define kernels, as separate functions from those of the CPU,
by assigning them a function type qualifiers __global__or __device__.
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At the GPU level, the same kernel is executed by a large number of parallel CUDA
threads grouped together as a grid of thread blocks. Each multiprocessor of the GPU
executes one or more thread blocks in single instruction, multiple data fashion (SIMD)
and in turn each core of a GPU multiprocessor runs one or more threads within a
block in single instruction, multiple threads fashion (SIMT). In order to maximize the
occupation of the GPU cores, the number of CUDA threads to be involved in a kernel
execution is computed according to the size of the problem to be solved. In contrast,
the block size is restricted by the limited memory resources of a core. On current
GPUs, a thread block may contain up to 1,024 concurrent threads. At any given clock
cycle, the threads execute the same instruction of a kernel, but each of them operates on
different data. Moreover, threads within a block can cooperate by sharing data through
the fast shared memory and coordinate their execution through synchronization points.
In contrast, within a grid of thread blocks, there is no synchronization at all between
blocks.

GPUs only work on data filled in their global memory and the final results of their
kernel executions must be communicated to their hosts (CPUs). Hence, the data must
be transferred in and out of the GPU. However, the speed of memory copy between
the CPU and the GPU is slower than the memory copy speed of GPUs. Accordingly,
it is necessary to limit the transfer of data between the GPU and its host.

4 GMRES method

The generalized minimal residual method (GMRES) is an iterative method designed
by Saad and Schultz [31]. It is a generalization of the minimal residual method
(MNRES) [29] to deal with asymmetric and non Hermitian problems and indefinite
symmetric problems.

Let us consider the following sparse linear system of n equations:

Ax = b, (1)

where A ∈ R
n×n is a sparse square and nonsingular matrix, x ∈ R

n is the solution
vector and b ∈ R

n is the right-hand side vector. The main idea of the GMRES method
is to find a sequence of solutions {xk}k∈N which minimizes at best the residual rk =
b − Axk . The solution xk is computed in a Krylov sub-space Kk(A, v1):

Kk(A, v1) ≡ span{v1, Av1, A2v1, . . . , Ak−1v1}, v1 = r0‖r0‖2 , (2)

such that the Petrov–Galerkin condition is satisfied:

rk ⊥ AKk(A, v1). (3)

Algorithm 1 illustrates the main key points of the GMRES method with restarts.
The linear system to be solved in this algorithm is left-preconditioned, where M is
the preconditioning matrix. The Arnoldi process [2] is used (from line 7 to line 17 of
Algorithm 1) to construct an orthonormal basis Vm and a Hessenberg matrix H̄m of
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order (m+1)×m such that m � n. Then, the least-squares problem is solved (line 18)
to find the vector y ∈ R

m which minimizes the residual. Finally, the solution xm is
computed in the Krylov sub-space spanned by Vm (line 19). In practice, the GMRES
algorithm stops when the Euclidean norm of the residual is small enough and/or the
maximum number of iterations is reached.

Algorithm 1: Left-preconditioned GMRES algorithm with restarts
Input: A (matrix), b (vector), M (preconditioning matrix), x0 (initial guess), ε (tolerance threshold),

max (maximum number of iterations), m (number of iterations of the Arnoldi process)
Output: x (solution vector)

1 r0 ← M−1(b − Ax0);
2 β ← ‖r0‖2;

3 α← ‖M−1b‖2;
4 convergence← false;
5 k ← 1;

6 while (¬convergence) do
7 v1 ← r0/β;
8 for j = 1 to m do
9 w j ← M−1 Av j ;

10 for i = 1 to j do
11 hi, j ← (w j , vi );
12 w j ← w j − hi, j × vi ;
13 end
14 h j+1, j ← ‖w j‖2;
15 v j+1 ← w j /h j+1, j ;
16 end

17 Put Vm = {v j }1≤ j≤m and H̄m = (hi, j ) Hessenberg matrix of order (m + 1)× m;
18 Solve the least-squares problem of size m: min

y∈Rm
‖βe1 − H̄m y‖2;

19 xm ← x0 + Vm y;

20 rm ← M−1(b − Axm );
21 β ← ‖rm‖2;

22 if (
β
α < ε) or (k ≥ max) then

23 convergence← true;
24 else
25 x0 ← xm ;
26 r0 ← rm ;
27 k ← k + 1;
28 end
29 end

5 Parallel GMRES method on GPU clusters

5.1 Parallel implementation on a GPU cluster

The implementation of the GMRES algorithm on a GPU cluster is performed by using
a parallel heterogeneous programming. We use the programming language CUDA for
the GPUs and the parallel environment MPI for the distribution of the computations
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offset 1

offset 2
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Fig. 1 Data partitioning of the sparse matrix A, the solution vector x and the right-hand side b in 4 partitions

between the GPU computing nodes. In this work, a GPU computing node is composed
of a GPU and a CPU core managed by a MPI process.

Let us consider a cluster composed of p GPU computing nodes. First, the sparse
linear system (1) is split into p sub-linear systems, each is attributed to a GPU com-
puting node. We partition row-by-row the sparse matrix A and both vectors x and b
in p parts (see Fig. 1). The data issued from the partitioning operation are off-loaded
on the GPU global memories to be proceeded by the GPUs. Then, all the computing
nodes of the GPU cluster execute the same GMRES iterative algorithm but on different
data. Finally, the GPU computing nodes synchronize their computations by using MPI
communication routines to solve the global sparse linear system. In what follows, the
computing nodes sharing data are called the neighboring nodes.

In order to exploit the computing power of the GPUs, we have to execute maximum
computations on GPUs to avoid the data transfers between the GPU and its host (CPU),
and to maximize the GPU core utilization to hide global memory access latency. The
implementation of the GMRES algorithm is performed by executing the functions
operating on vectors and matrices as kernels on GPUs. These operations are often
easy to parallelize and more efficient on parallel architectures when they operate
on large vectors. We use the fastest routines of the CUDA Basic Linear Algebra
Subroutines library (CUBLAS) to implement the dot product (cublasDdot()), the
Euclidean norm (cublasDnrm2()) and the AXPY operation (cublasDaxpy()).
In addition, we have coded in CUDA a kernel for the scalar–vector product (lines 7
and 15 of Algorithm 1), a kernel for solving the least-squares problem (line 18) and a
kernel for solution vector updates (line 19).

The solution of the least-squares problem in the GMRES algorithm is based on:
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• a QR factorization of the Hessenberg matrix H̄ by using plane rotations and,
• backward-substitution method to compute the vector y minimizing the residual.

This operation is not easy to parallelize and it is not interesting to implement it on
GPUs. However, the size m of the linear least-squares problem to solve in the GMRES
method with restarts is very small. So, this problem is solved in sequential by one GPU
thread.

The most important operation in the GMRES method is the sparse matrix–vector
multiplication. It is quite expensive for large size matrices in terms of execution time
and memory space. In addition, it performs irregular memory accesses to read the
nonzero values of the sparse matrix, implying non-coalescent accesses to the GPU
global memory which slow down the performances of the GPUs. So we use the HYB
kernel developed and optimized by NVIDIA [15] which gives on average the best
performance in sparse matrix–vector multiplications on GPUs [6]. The Hybrid (HYB)
storage format is the combination of two sparse storage formats: Ellpack format (ELL)
and Coordinate format (COO). It stores a typical number of nonzero values per row
in ELL format and remaining entries of exceptional rows in COO format. It combines
the efficiency of ELL, due to the regularity of its memory accessing and the flexibility
of COO which is insensitive to the matrix structure.

In the parallel GMRES algorithm, the GPU computing nodes must exchange
between them their shared data in order to construct the global vector necessary to
compute the parallel sparse matrix–vector multiplication (SpMV). In fact, each com-
puting node has locally the vector elements corresponding to the rows of its sparse
sub-matrix and, in order to compute its part of the SpMV, it also requires the vector
elements of its neighboring nodes corresponding to the column indices in which its
local sub-matrix has nonzero values. Consequently, each computing node manages a
global vector composed of a local vector of size n

p and a shared vector of size S:

S = bw− n

p
, (4)

where n
p is the size of the local vector and bw is the bandwidth of the local sparse

sub-matrix which represents the number of columns between the minimum and the
maximum column indices (see Fig. 1). In order to improve memory accesses, we use
the texture memory to cache elements of the global vector.

On a GPU cluster, the exchanges of the shared vectors elements between the neigh-
boring nodes are performed as follows:

• at the level of the sending node: data transfers of the shared data from the GPU
global memory to the CPU memory by using the CUBLAS communication routine
cublasGetVector(),
• data exchanges between the CPUs by the MPI communication routine
MPI_Alltoallv() and,
• at the level of the receiving node: data transfers of the received shared data from

the CPU memory to the GPU global memory by using CUBLAS communication
routine cublasSetVector().
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5.2 Experimentations

The experiments are done on a cluster composed of six machines interconnected by an
Infiniband network of 20 GB/s. Each machine is a Xeon E5530 Quad-Core running at
2.4 GHz. It provides 12 GB of RAM with a memory bandwidth of 25.6 GB/s and it is
equipped with two Tesla C1060 GPUs. Each GPU is composed of 240 cores running
at 1.3 GHz and has 4 GB of global memory with a memory bandwidth of 102 GB/s.
The GPU is connected to the CPU via a PCI-Express 16x Gen2.0 with a throughput
of 8 GB/s. Figure 2 shows the general scheme of the GPU cluster.

Scientific Linux 5.10, with Linux version 2.6.18, is installed on the six machines.
The C programming language is used for coding the GMRES algorithm on both the
CPU and the GPU versions. CUDA version 4.0 [28] is used for programming the
GPUs, using CUBLAS library [27] to deal with the functions operating on vectors.

MARMARMAR

MARMARMAR

Machine 0 Machine 1 Machine 2

Machine 3 Machine 4 Machine 5

8GB/s8GB/s

RAM

GPU 0

102GB/s

RAM

GPU 1

102GB/s

240 cores 240 cores

25,6GB/s

CPU Quad−Core

Core1 Core2 Core3Core0

8GB/s8GB/s

RAM

GPU 0

102GB/s

RAM

GPU 1

102GB/s

240 cores 240 cores

25,6Go/s

CPU Quad−Core

Core1 Core2 Core3Core0

8GB/s8GB/s

RAM
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102GB/s

RAM

GPU 1

102GB/s
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25,6GB/s
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GPU 1

102GB/s

240 cores 240 cores

25,6GB/s

CPU Quad−Core

Core1 Core2 Core3Core0
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GPU 1
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CPU Quad−Core

Core1 Core2 Core3Core0

Infiniband communication network 20GB/s

Fig. 2 A cluster composed of six machines, each equipped with two Tesla C1060 GPUs
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Table 1 Main characteristics of the sparse matrices chosen from the Davis collection

Matrix type Name # Rows # Nonzeros Bandwidth

Symmetric 2cubes_sphere 101,492 1,647,264 100,464

ecology2 999,999 4,995,991 2,001

finan512 74,752 596,992 74,725

G3_circuit 1,585,478 7,660,826 1,219,059

shallow_water2 81,920 327,680 58,710

thermal2 1,228,045 8,580,313 1,226,629

Asymmetric cage13 445,315 7,479,343 318,788

crashbasis 160,000 1,750,416 120,202

FEM_3D_thermal2 147,900 3,489,300 117,827

language 399,130 1,216,334 398,622

poli_large 15,575 33,074 15,575

torso3 259,156 4,429,042 216,854

thermal2

cage13 torso3poli_largelanguage

2cubes_sphere

crashbasis FEM_3D_thermal2

ecology2 finan512 G3_circuit shallow_water2

Fig. 3 Structures of the sparse matrices chosen from the Davis collection

Finally, MPI routines of OpenMPI 1.3.3 are used to carry out the communications
between the CPU cores.

The experiments are done on linear systems associated with sparse matrices chosen
from the Davis collection of the University of Florida [16]. They are matrices arising in
real-world applications. Table 1 shows the main characteristics of these sparse matrices
and Fig. 3 shows their sparse structures. For each matrix, we give the number of rows
(column 3 in Table 1), the number of nonzero values (column 4) and the bandwidth
(column 5).

All the experiments are performed on double-precision data. The parameters of
the parallel GMRES algorithm are as follows: the tolerance threshold ε = 10−12, the
maximum number of iterations Max = 500, the Arnoldi process is limited to m = 16
iterations, the elements of the guess solution x0 is initialized to 0 and those of the
right-hand side vector are initialized to 1. For simplicity’s sake, we chose the matrix
preconditioning M as the main diagonal of the sparse matrix A. Indeed, it allows us
to easily compute the required inverse matrix M−1 and it provides relatively good
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Table 2 Performances of the parallel GMRES algorithm on a cluster of 24 CPU cores vs. a cluster of 12
GPUs

Matrix TimeCPU (s) TimeGPU (s) τ # Iter Prec �

2cubes_sphere 0.234 0.124 1.88 21 2.10e−14 3.47e−18

ecology2 0.076 0.035 2.15 21 4.30e−13 4.38e−15

finan512 0.073 0.052 1.40 17 3.21e−12 5.00e−16

G3_circuit 1.016 0.649 1.56 22 1.04e−12 2.00e−15

shallow_water2 0.061 0.044 1.38 17 5.42e−22 2.71e−25

thermal2 1.666 0.880 1.89 21 6.58e−12 2.77e−16

cage13 0.721 0.338 2.13 26 3.37e−11 2.66e−15

crashbasis 1.349 0.830 1.62 121 9.10e−12 6.90e−12

FEM_3D_thermal2 0.797 0.419 1.90 64 3.87e−09 9.09e−13

language 2.252 1.204 1.87 90 1.18e−10 8.00e−11

poli_large 0.097 0.095 1.02 69 4.98e−11 1.14e−12

torso3 4.242 2.030 2.09 175 2.69e−10 1.78e−14

preconditioning in most cases. Finally, we set the size of a thread block in GPUs to
512 threads. It should be noted that the same optimizations are performed on the CPU
version and on the GPU version of the parallel GMRES algorithm.

In Table 2, we give the performances of the parallel GMRES algorithm for solving
the linear systems associated with the sparse matrices shown in Table 1. The second
and third columns show the execution times in seconds obtained on a cluster of 24
CPU cores and on a cluster of 12 GPUs, respectively. The fourth column shows the
ratio τ between the CPU time TimeCPU and the GPU time TimeGPU that is computed
as follows:

τ = TimeCPU

TimeGPU
. (5)

From these ratios, we can notice that the use of many GPUs is not interesting to solve
small sparse linear systems. Solving these sparse linear systems on a cluster of 12 GPUs
is as fast as on a cluster of 24 CPU cores. Indeed, the small sizes of the sparse matrices
do not allow to maximize the utilization of the GPU cores of the cluster. The fifth, sixth
and seventh columns show, respectively, the number of iterations performed by the
parallel GMRES algorithm to converge, the precision of the solution, Prec, computed
on the GPU cluster and the difference, �, between the solutions computed on the CPU
and the GPU clusters. The last two parameters are used to validate the results obtained
on the GPU cluster and they are computed as follows:

Prec = ‖M−1(b − AxG PU )‖∞,

� = ‖xC PU − xG PU‖∞, (6)

where xCPU and xGPU are the solutions computed, respectively, on the CPU cluster
and on the GPU cluster. We can see that the precision of the solutions computed on the
GPU cluster are sufficient, they are about 10−10, and the parallel GMRES algorithm
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Fig. 4 Example of the generation of a large sparse and band matrix by four computing nodes

computes almost the same solutions in both CPU and GPU clusters, with � varying
from 10−11 to 10−25.

Afterwards, we evaluate the performances of the parallel GMRES algorithm for
solving large linear systems. We have developed in C programming language a gen-
erator of large sparse matrices having a band structure which arises in most numerical
problems. This generator uses the sparse matrices of the Davis collection as the initial
matrices to build the large band matrices. It is executed in parallel by all the MPI
processes of the cluster so that each process constructs its own sub-matrix as a rectan-
gular block of the global sparse matrix. Each process i computes the size ni and the
offset offseti of its sub-matrix in the global sparse matrix according to the size n of the
linear system to be solved and the number of the GPU computing nodes p as follows:

ni = n

p
, (7)

offseti =
{

0 if i = 0,

offseti−1 + ni−1 otherwise.
(8)

So each process i performs several copies of the same initial matrix chosen from the
Davis collection and it puts all these copies on the main diagonal of the global matrix
in order to construct a band matrix. Moreover, it fulfills the empty spaces between
two successive copies by small copies, lower_copy and upper_copy, of the same ini-
tial matrix. Figure 4 shows a generation of a sparse band matrix by four computing
s nodes.

Table 3 shows the main characteristics (the number of nonzero values and the band-
width) of the large sparse matrices generated from those of the Davis collection. These
matrices are associated with the linear systems of 25 million of unknown values (each
generated sparse matrix has 25 million rows). In Table 4 we show the performances

123

Author's personal copy



L. Z. Khodja et al.

Table 3 Main characteristics of
the sparse and band matrices
generated from the sparse
matrices of the Davis collection

Matrix type Name # Nonzeros Bandwidth

Symmetric 2cubes_sphere 413,703,602 198,836

ecology2 124,948,019 2,002

finan512 278,175,945 123,900

G3_circuit 125,262,292 1,891,887

shallow_water2 100,235,292 62,806

thermal2 175,300,284 2,421,285

Asymmetric cage13 435,770,480 352,566

crashbasis 409,291,236 200,203

FEM_3D_thermal2 595,266,787 206,029

language 76,912,824 398,626

poli_large 53,322,580 15,576

torso3 433,795,264 328,757

Table 4 Performances of the parallel GMRES algorithm for solving large sparse linear systems associated
with band matrices on a cluster of 24 CPU cores vs. a cluster of 12 GPUs

Matrix TimeCPU (s) TimeGPU (s) τ # Iter Prec �

2cubes_sphere 3.683 0.870 4.23 21 2.11e−14 8.67e−18

ecology2 2.570 0.424 6.06 21 4.88e−13 2.08e−14

finan512 2.727 0.533 5.11 17 3.22e−12 8.82e−14

G3_circuit 4.656 1.024 4.54 22 1.04e−12 5.00e−15

shallow_water2 2.268 0.384 5.91 17 5.54e−21 7.92e−24

thermal2 4.650 1.130 4.11 21 8.89e−12 3.33e−16

cage13 6.068 1.054 5.75 26 3.29e−11 1.59e−14

crashbasis 25.906 4.569 5.67 135 6.81e−11 4.61e−15

FEM_3D_thermal2 13.555 2.654 5.11 64 3.88e−09 1.82e−12

language 13.538 2.621 5.16 89 2.11e−10 1.60e−10

poli_large 8.619 1.474 5.85 69 5.05e−11 6.59e−12

torso3 35.213 6.763 5.21 175 2.69e−10 2.66e−14

of the parallel GMRES algorithm for solving large linear systems associated with the
sparse band matrices of Table 3. The fourth column gives the ratio between the exe-
cution time spent on a cluster of 24 CPU cores and that spent on a cluster of 12 GPUs.
We can notice from these ratios that for solving large sparse matrices the GPU cluster
is more efficient (about five times faster) than the CPU cluster. The computing power
of the GPUs allows to accelerate the computation of the functions operating on large
vectors of the parallel GMRES algorithm.

6 Minimization of communications

The parallel sparse matrix–vector multiplication requires data exchanges between the
GPU computing nodes to construct the global vector. However, a GPU cluster requires
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communications between the GPU nodes and the data transfers between the GPUs and
their hosts CPUs. In fact, a communication between two GPU nodes implies: a data
transfer from the GPU memory to the CPU memory at the sending node, a MPI
communication between the CPUs of two GPU nodes, and a data transfer from the
CPU memory to the GPU memory at the receiving node. Moreover, the data transfers
between a GPU and a CPU are considered as the most expensive communications
on a GPU cluster. For example, in our GPU cluster, the data throughput between a
GPU and a CPU is of 8 GB/s which is about twice lower than the data transfer rate
between CPUs (20 GB/s) and 12 times lower than the memory bandwidth of the GPU
global memory (102 GB/s). In this section, we propose two solutions to improve the
execution time of the parallel GMRES algorithm on GPU clusters.

6.1 Compressed storage format of the sparse vectors

In Sect. 5.1, the SpMV multiplication uses a global vector having a size equivalent
to the matrix bandwidth (see Formula 4). However, we can notice that a SpMV mul-
tiplication does not often need all the vector elements of the global vector composed
of the local and shared sub-vectors. For example, in Fig. 1, node 1 only needs a sin-
gle vector element from node 0 (element 1), two elements from node 2 (elements 8
and 9) and two elements from node 3 (elements 13 and 14). Therefore, to reduce the
communication overheads of the unused vector elements, the GPU computing nodes
must exchange between them only the vector elements necessary to perform their local
sparse matrix–vector multiplications.

We propose to use a compressed storage format of the sparse global vector. In
Fig. 5, we show an example of the data exchanges between node 1 and its neighbors
to construct the compressed global vector. First, the neighboring nodes 0, 2 and 3

1 8 9 13 14

0 1 2 3 8 9 10 11 12 13 14 15

90 8765432 511 14131211

1 8 9 13 14

10

Local sparse matrix

Global vector
Local

sub−vector

Shared sub−vector

Sparse storage
format

Compressed storage
format

Send vector elements
to node 1

Local sub−vectors

elements by the node 1
Compute the required

Node 1

Neighboring nodes

0, 2 and 3

Node 0 Node 2 Node 3

Fig. 5 Example of data exchanges between node 1 and its neighbors 0, 2 and 3
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local sparse matrix

Reordered local sparse sub−matrix

Fig. 6 Reordering of the columns of a local sparse matrix

determine the vector elements needed by node 1 and, then, they send only these
elements to it. Node 1 receives these shared elements in a compressed vector. However,
to compute the sparse matrix–vector multiplication, it must first copy the received
elements to the corresponding indices in the global vector. In order to avoid this
process at each iteration, we propose to reorder the columns of the local sub-matrices
so as to use the shared vectors in their compressed storage format (see Fig. 6). For
performance purposes, the computation of the shared data to send to the neighboring
nodes is performed by the GPU as a kernel. In addition, we use the MPI point-to-point
communication routines: a blocking send routine MPI_Send() and a nonblocking
receive routine MPI_Irecv().

Table 5 shows the performances of the parallel GMRES algorithm using the com-
pressed storage format of the sparse global vector. The results are obtained from
solving large linear systems associated with the sparse band matrices presented in
Table 3. We can see from Table 5 that the execution times of the parallel GMRES
algorithm on a cluster of 12 GPUs are improved by about 38 % compared to those
presented in Table 4. In addition, the ratios between the execution times spent on the
cluster of 24 CPU cores and those spent on the cluster of 12 GPUs have increased.
Indeed, the reordering of the sparse sub-matrices and the use of a compressed storage
format for the sparse vectors minimize the communication overheads between the
GPU computing nodes.

6.2 Hypergraph partitioning

In this section, we use another structure of the sparse matrices. We are interested in
sparse matrices whose nonzero values are distributed along their large bandwidths.
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Table 5 Performances of the parallel GMRES algorithm using a compressed storage format of the sparse
vectors for solving large sparse linear systems associated with band matrices on a cluster of 24 CPU cores
vs. a cluster of 12 GPUs

Matrix TimeCPU (s) TimeGPU (s) τ # Iter Prec �

2cubes_sphere 3.597 0.514 6.99 21 2.11e−14 8.67e−18

ecology2 2.549 0.288 8.83 21 4.88e−13 2.08e−14

finan512 2.660 0.377 7.05 17 3.22e−12 8.82e−14

G3_circuit 3.139 0.480 6.53 22 1.04e−12 5.00e−15

shallow_water2 2.195 0.253 8.68 17 5.54e−21 7.92e−24

thermal2 3.206 0.463 6.93 21 8.89e−12 3.33e−16

cage13 5.560 0.663 8.39 26 3.29e−11 1.59e−14

crashbasis 25.802 3.511 7.35 135 6.81e−11 4.61e−15

FEM_3D_thermal2 13.281 1.572 8.45 64 3.88e−09 1.82e−12

language 12.553 1.760 7.13 89 2.11e−10 1.60e−10

poli_large 8.515 1.053 8.09 69 5.05e−11 6.59e−12

torso3 31.463 3.681 8.55 175 2.69e−10 2.66e−14
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Fig. 7 Example of the generation of a large sparse matrix having five bands by four computing nodes

We developed in C programming language a generator of sparse matrices having five
bands (see Fig. 7). The principle of this generator is the same as the one presented
in Sect. 5.2. However, the copies made from the initial sparse matrix, chosen from
the Davis collection, are placed on the main diagonal and on two off-diagonals on the
left and right of the main diagonal. Table 6 shows the main characteristics of sparse
matrices of size 25 million of rows and generated from those of the Davis collection.
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Table 6 Main characteristics of
the sparse matrices having five
bands and generated from the
sparse matrices of the Davis
collection

Matrix type Name # Nonzeros Bandwidth

Symmetric 2cubes_sphere 829,082,728 24,999,999

ecology2 254,892,056 25,000,000

finan512 556,982,339 24,999,973

G3_circuit 257,982,646 25,000,000

shallow_water2 200,798,268 25,000,000

thermal2 359,340,179 24,999,998

Asymmetric cage13 879,063,379 24,999,998

crashbasis 820,373,286 24,999,803

FEM_3D_thermal2 1,194,012,703 24,999,998

language 155,261,826 24,999,492

poli_large 106,680,819 25,000,000

torso3 872,029,998 25,000,000

Table 7 Performances of the parallel GMRES algorithm using a compressed storage format of the sparse
vectors for solving large sparse linear systems associated with matrices having five bands on a cluster of
24 CPU cores vs. a cluster of 12 GPUs

Matrix TimeCPU (s) TimeGPU (s) τ # Iter Prec �

2cubes_sphere 15.963 7.250 2.20 58 6.23e−16 3.25e−19

ecology2 3.549 2.176 1.63 21 4.78e−15 1.06e−15

finan512 3.862 1.934 1.99 17 3.21e−14 8.43e−17

G3_circuit 4.636 2.811 1.65 22 1.08e−14 1.77e−16

shallow_water2 2.738 1.539 1.78 17 5.54e−23 3.82e−26

thermal2 5.017 2.587 1.94 21 8.25e−14 4.34e−18

cage13 9.315 3.227 2.89 26 3.38e−13 2.08e−16

crashbasis 35.980 14.770 2.43 127 1.17e−12 1.56e−17

FEM_3D_thermal2 24.611 7.749 3.17 64 3.87e−11 2.84e−14

language 16.859 9.697 1.74 89 2.17e−12 1.70e−12

poli_large 10.200 6.534 1.56 69 5.14e−13 1.63e−13

torso3 49.074 19.397 2.53 175 2.69e−12 2.77e−16

We can see in the fourth column that the bandwidths of these matrices are as large as
their sizes.

In Table 7 we give the performances of the parallel GMRES algorithm on the CPU
and GPU clusters for solving large linear systems associated with the sparse matrices
shown in Table 6. We can notice from the ratios given in the fourth column that solving
sparse linear systems associated with matrices having large bandwidth on the GPU
cluster is as fast as on the CPU cluster. This is due to the large total communication
volume necessary to synchronize the computations over the cluster. In fact, the naive
partitioning row-by-row or column-by-column of this type of sparse matrices links
a GPU node to many neighboring nodes and produces a significant number of data
dependencies between the different GPU nodes.
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Fig. 8 A hypergraph partitioning of a sparse matrix between three computing nodes

We propose to use a hypergraph partitioning method which is well adapted to numer-
ous structures of sparse matrices [8]. Indeed, it can well model the communications
between the computing nodes especially for the asymmetric and rectangular matrices.
It gives in most cases good reductions of the total communication volume. Neverthe-
less, it is more expensive in terms of execution time and memory space consumption
than the partitioning method based on graphs.

The sparse matrix A of the linear system to be solved is modelled as a hypergraph
H = (V, E) as follows:

• each matrix row i (0 ≤ i < n) corresponds to a vertex vi ∈ V ,
• each matrix column j (0 ≤ j < n) corresponds to a hyperedge e j ∈ E , such that:
∀ai j is a nonzero value of the matrix A, vi ∈ pins[e j ],
• wi is the weight of vertex vi ,
• c j is the cost of hyperedge e j .

A K -way partitioning of a hypergraph H = (V, E) is defined as a set of K pairwise
disjoint non-empty subsets (or parts) of the vertex set V: P = {V1, . . . ,Vk}, such that
V = ∪K

k=1Vk . Each computing node is in charge of a vertex subset. Figure 8 shows
an example of a hypergraph partitioning of a sparse matrix of size (9× 9) into three
parts. The circles and squares correspond, respectively, to the vertices and hyperedges
of the hypergraph. The solid squares define the cut hyperedges connecting at least two
different parts. The connectivity λ j denotes the number of different parts spanned by
the cut hyperedge e j .

The cut hyperedges model the communications between the different GPU com-
puting nodes in the cluster, necessary to perform the SpMV multiplication. Indeed,
each hyperedge e j defines a set of atomic computations bi ← bi +ai j x j of the SpMV
multiplication which needs the jth element of vector x . Therefore, pins of hyperedge
e j (pins[e j ]) denote the set of matrix rows requiring the same vector element x j . For
example, in Fig. 8 hyperedge e9 whose pins are pins[e9] = {v2, v5, v9} represents
matrix rows 2, 5 and 9 requiring the vector element x9 to compute in parallel the atomic
operations: b2 ← b2 + a29x9, b5 ← b5 + a59x9 and b9 ← b9 + a99x9. However, x9
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Table 8 Performances of the parallel GMRES algorithm using a compressed storage format of the sparse
vectors and a hypergraph partitioning method for solving large sparse linear systems associated with matrices
having five bands on a cluster of 24 CPU cores vs. a cluster of 12 GPUs

Matrix TimeCPU (s) TimeGPU (s) τ # Iter Prec �

2cubes_sphere 16.430 2.840 5.78 58 6.23e−16 3.25e−19

ecology2 3.152 0.367 8.59 21 4.78e−15 1.06e−15

finan512 3.672 0.723 5.08 17 3.21e−14 8.43e−17

G3_circuit 4.468 0.971 4.60 22 1.08e−14 1.77e−16

shallow_water2 2.647 0.312 8.48 17 5.54ev23 3.82e−26

thermal2 4.190 0.666 6.29 21 8.25e−14 4.34e−18

cage13 8.077 1.584 5.10 26 3.38e−13 2.08e−16

crashbasis 35.173 5.546 6.34 127 1.17e−12 1.56e−17

FEM_3D_thermal2 24.825 3.113 7.97 64 3.87e−11 2.84e−14

language 16.706 2.522 6.62 89 2.17e−12 1.70e−12

poli_large 12.715 3.989 3.19 69 5.14e−13 1.63e−13

torso3 48.459 6.234 7.77 175 2.69e−12 2.77e−16

is a vector element of the computing node 3 and it must be sent to the neighboring
nodes 1 and 2.

The hypergraph partitioning allows to reduce the total communication volume while
maintaining the computational load balance between the computing nodes. Indeed, it
minimizes at best the following sum:

X (P) =
∑

e j∈EC

c j (λ j − 1), (9)

where EC is the set of the cut hyperedges issued from the partitioning P , c j and λ j

are, respectively, the cost and the connectivity of the cut hyperedge e j . In addition,
the hypergraph partitioning is constrained to maintain the load balance between the
K parts:

Wk ≤ (1+ ε)Wavg, (1 ≤ k ≤ K ) and (0 < ε < 1), (10)

where Wk is the sum of the vertex weights in the subset Vk , Wavg is the average part’s
weight and ε is the maximum allowed imbalanced ratio.

The hypergraph partitioning is an NP-complete problem but software tools using
heuristics are developed, for example: hMETIS [24], PaToH [9] and Zoltan [17]. Due
to the large sizes of the linear systems to be solved, we use a parallel hypergraph parti-
tioning which must be performed by at least two MPI processes. The hypergraph model
H of the sparse matrix is split into p (number of computing nodes) sub-hypergraphs
Hk = (Vk, Ek), 0 ≤ k < p, then the parallel partitioning is applied by using the MPI
communication routines.

Table 8 shows the performances of the parallel GMRES algorithm for solving
the linear systems associated with the sparse matrices presented in Table 6. In the
experiments, we have used the compressed storage format of the sparse vectors and the
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Table 9 Total communication volume on a cluster of 12 GPUs using row-by-row or hypergraph partitioning
methods and compressed vectors

Matrix Total comm. vol.
using row-by row
partitioning

Total comm. vol.
using compressed
format

Total comm. vol.
using hypergraph
partitioning and
compressed format

Time of
hypergraph
partitioning
in minutes

2cubes_sphere 182,061,791 25,360,543 240,679 68.98

ecology2 181,267,000 26,044,002 73,021 4.92

finan512 182,090,692 26,087,431 900,729 33.72

G3_circuit 192,244,835 31,912,003 5,366,774 11.63

shallow_water2 181,729,606 25,105,108 60,899 5.06

thermal2 191,350,306 30,012,846 1,077,921 17.88

cage13 183,970,606 28,254,282 3,845,440 196.45

crashbasis 182,931,818 29,020,060 2,401,876 33.39

FEM_3D_thermal2 182,503,894 25,263,767 250,105 49.89

language 183,055,017 27,291,486 1,537,835 9.07

poli_large 181,381,470 25,053,554 7,388,883 5.92

torso3 183,863,292 25,682,514 613,250 61.51

The total communication volume is defined as the total number of vector elements exchanged between all
GPUs of the cluster

parallel hypergraph partitioning developed in the Zoltan tool [30,35]. The parameters
of the hypergraph partitioning are initialized as follows:

• the weight wi of each vertex vi is set to the number of the nonzero values on the
matrix row i ,
• for simplicity’s sake, the cost c j of each hyperedge e j is set to 1,
• the maximum imbalanced ratio ε is limited to 10 %.

We can notice from Table 8 that the execution times on the cluster of 12 GPUs are
significantly improved compared to those presented in Table 7. The hypergraph parti-
tioning applied on the large sparse matrices having large bandwidths have improved
the execution times on the GPU cluster by about 65 %.

Table 9 shows in the second, third and fourth columns the total communication
volume on a cluster of 12 GPUs by using row-by-row partitioning or hypergraph par-
titioning and compressed format. The total communication volume defines the total
number of vector elements exchanged between the 12 GPUs. From these columns we
can see that the two heuristics, compressed format for the vectors and the hypergraph
partitioning, minimize the number of vector elements to be exchanged over the GPU
cluster. The compressed format allows the GPUs to exchange the needed vector ele-
ments without any communication overheads. The hypergraph partitioning allows to
split the large sparse matrices so as to minimize data dependencies between the GPU
computing nodes. However, we can notice in the fifth column that the hypergraph par-
titioning takes longer than the computation times. As we have mentioned before, the
hypergraph partitioning method is less efficient in terms of memory consumption and
partitioning time than its graph counterpart. So for the applications which often use
the same sparse matrices, we can perform the hypergraph partitioning only once and,
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Table 10 Ratios of the computation time over the communication time obtained from the parallel GMRES
algorithm using row-by-row partitioning on 12 GPUs and 24 CPUs

Matrix GPU version CPU version

Timecomput
(s)

Timecomm
(s)

Ratio Timecomput
(s)

Timecomm
(s)

Ratio

2cubes_sphere 37.067 1,434.512 0.026 312.061 3,453.931 0.090

ecology2 4.116 501.327 0.008 60.776 1,216.607 0.050

finan512 7.170 386.742 0.019 72.464 932.538 0.078

G3_circuit 4.797 537.343 0.009 66.011 1,407.378 0.047

shallow_water2 3.620 411.208 0.009 51.294 973.446 0.053

thermal2 6.902 511.618 0.013 77.255 1,281.979 0.060

cage13 12.837 625.175 0.021 139.178 1,518.349 0.092

crashbasis 48.532 3,195.183 0.015 623.686 7,741.777 0.081

FEM_3D_thermal2 37.211 1,584.650 0.023 370.297 3,810.255 0.097

language 22.912 2,242.897 0.010 286.682 5,348.733 0.054

poli_large 13.618 1,722.304 0.008 190.302 4,059.642 0.047

torso3 74.194 4,454.936 0.017 897.440 10,800.787 0.083

then, we save the traces in files to be reused several times. Therefore, this allows us to
avoid the partitioning of the sparse matrices at each resolution of the linear systems.

Hereafter, we show the influence of the communications on a GPU cluster com-
pared to a CPU cluster. In Tables 10, 11 and 12, we compute the ratios between
the computation time over the communication time of three versions of the parallel
GMRES algorithm to solve sparse linear systems associated with matrices of Table 6.
These tables show that the hypergraph partitioning and the compressed format of the
vectors increase the ratios either on the GPU cluster or on the CPU cluster. That means
that the two optimization techniques allow the minimization of the total communi-
cation volume between the computing nodes. However, we can notice that the ratios
obtained on the GPU cluster are lower than those obtained on the CPU cluster. Indeed,
GPUs compute faster than CPUs but with GPUs there are more communications due
to CPU/GPU communications, so communications are more time-consuming while
the computation time remains unchanged. Furthermore, we can notice that the GPU
computation times on Tables 11 and 12 are about 10 % lower than those on Table 10.
Indeed, the compression of the vectors and the reordering of matrix columns allow
to perform coalesced accesses to the GPU memory and thus accelerate the sparse
matrix–vector multiplication.

Figure 9 presents the weak scaling of four versions of the parallel GMRES algo-
rithm on a GPU cluster. We fixed the size of a sub-matrix to 5 million of rows per GPU
computing node. We used matrices having five bands generated from the symmetric
matrix thermal2. This figure shows that the parallel GMRES algorithm, in its naive ver-
sion or using either the compression format for vectors or the hypergraph partitioning,
is not scalable on a GPU cluster due to the large amount of communications between
GPUs. In contrast, we can see that the algorithm using both optimization techniques is
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Table 11 Ratios of the computation time over the communication time obtained from the parallel GMRES
algorithm using row-by-row partitioning and compressed format for vectors on 12 GPUs and 24 CPUs

Matrix GPU version CPU version

Timecomput
(s)

Timecomm
(s)

Ratio Timecomput
(s)

Timecomm
(s)

Ratio

2cubes_sphere 27.386 154.861 0.177 342.255 42.100 8.130

ecology2 3.822 53.131 0.072 69.956 15.019 4.658

finan512 6.366 41.155 0.155 79.592 8.604 9.251

G3_circuit 4.543 63.132 0.072 76.540 27.371 2.796

shallow_water2 3.282 43.080 0.076 58.348 8.088 7.214

thermal2 5.986 57.100 0.105 87.682 28.544 3.072

cage13 10.227 70.388 0.145 152.718 30.785 4.961

crashbasis 41.527 369.071 0.113 701.040 158.916 4.411

FEM_3D_thermal2 28.691 167.140 0.172 403.510 50.935 7.922

language 22.408 242.589 0.092 333.119 64.409 5.172

poli_large 13.710 179.208 0.077 215.934 30.903 6.987

torso3 58.455 480.315 0.122 993.609 152.173 6.529

Table 12 Ratios of the computation time over the communication time obtained from the parallel GMRES
algorithm using hypergraph partitioning and compressed format for vectors on 12 GPUs and 24 CPUs

Matrix GPU version CPU version

Timecomput
(s)

Timecomm
(s)

Ratio Timecomput
(s)

Timecomm
(s)

Ratio

2cubes_sphere 28.440 7.768 3.661 327.109 63.788 5.128

ecology2 3.652 0.757 4.823 63.632 13.520 4.707

finan512 7.579 4.569 1.659 74.120 22.505 3.294

G3_circuit 4.876 8.745 0.558 72.280 28.395 2.546

shallow_water2 3.146 0.606 5.191 52.903 11.177 4.733

thermal2 6.473 4.325 1.497 81.171 20.907 3.882

cage13 11.676 7.723 1.512 145.755 46.547 3.131

crashbasis 42.799 29.399 1.456 650.386 203.918 3.189

FEM_3D_thermal2 29.875 8.915 3.351 382.887 93.252 4.106

language 20.991 11.197 1.875 310.679 82.480 3.767

poli_large 13.817 102.760 0.134 197.508 151.672 1.302

torso3 57.469 16.828 3.415 926.588 242.721 3.817

fairly scalable. That means that in this version the cost of communications is relatively
constant regardless the number of computing nodes in the cluster.

Finally, as far as we are concerned, the parallel solving of a linear system can be
easy to optimize when the associated matrix is regular. This is unfortunately not the
case for many real-world applications. When the matrix has an irregular structure,
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Fig. 9 Weak scaling of the parallel GMRES algorithm on a GPU cluster

the amount of communications between processors is not the same. Another impor-
tant parameter is the size of the matrix bandwidth which has a huge influence on
the amount of communications. In this work, we have generated different kinds of
matrices in order to analyze several difficulties. With a bandwidth as large as pos-
sible, involving communications between all processors, which is the most difficult
situation, we propose to use two heuristics. Unfortunately, there is no fast method that
optimizes the communications in any situation. For systems of non linear equations,
there are different algorithms but most of them consist in linearizing the system of
equations. In this case, a linear system needs to be solved. The big interest is that the
matrix is the same at each step of the non linear system solving, so the partitioning
method which is a time-consuming step is performed only once.

Another very important issue, which might be ignored by too many people, is
that the communications have a greater influence on a cluster of GPUs than on a
cluster of CPUs. There are two reasons for that. The first one comes from the fact
that with a cluster of GPUs, the CPU/GPU data transfers slow down communications
between two GPUs that are not on the same machines. The second one is due to the
fact that with GPUs the ratio of the computation time over the communication time
decreases since the computation time is reduced. So the impact of the communications
between GPUs might be a very important issue that can limit the scalability of parallel
algorithms.

7 Conclusion and perspectives

In this paper, we have aimed at harnessing the computing power of a GPU clus-
ter for solving large sparse linear systems. We have implemented the parallel algo-

123

Author's personal copy



Parallel sparse linear solver with GMRES method

rithm of the GMRES iterative method. We have used a heterogeneous parallel pro-
gramming based on the CUDA language to program the GPUs and the MPI par-
allel environment to distribute the computations between the GPU nodes on the
cluster.

The experiments have shown that solving large sparse linear systems is more effi-
cient on a cluster of GPUs than on a cluster of CPUs. However, the efficiency of a
GPU cluster is ensured as long as the spatial and temporal localization of the data is
well managed. The data dependency scheme on a GPU cluster is related to the sparse
structures of the matrices (positions of the nonzero values) and the number of the
computing nodes. We have shown that a large number of communications between the
GPU computing nodes affects considerably the performances of the parallel GMRES
algorithm on the GPU cluster. Therefore, we have proposed to reorder the columns of
the sparse local sub-matrices on each GPU node and to use a compressed storage for-
mat for the sparse vector involved in the parallel sparse matrix–vector multiplication.
This solution allows to minimize the communication overheads. In addition, we have
shown that it is interesting to choose a partitioning method according to the structure
of the sparse matrix. This reduces the total communication volume between the GPU
computing nodes.

In future works, it would be interesting to implement and study the scalability
of the parallel GMRES algorithm on large GPU clusters (hundreds or thousands of
GPUs) or on geographically distant GPU clusters. In this context, other methods
might be used to reduce communications and to improve the performances of the
parallel GMRES algorithm as the multisplitting methods. The recent GPU hardware
and software architectures provide the GPU-direct system which allows two GPUs,
placed in the same machine or in two remote machines, to exchange data without using
CPUs. This improves the data transfers between GPUs. Finally, it would be interesting
to implement other iterative methods on GPU clusters for solving large sparse linear
or non linear systems.
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