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1 Introduction
Information hiding has recently become a major digital technology [27, 42], es-
pecially with the increasing importance and widespread distribution of digital
media through the Internet. Spread-spectrum data-hiding techniques have been
widely studied in recent years under the scope of security. These techniques en-
compass several schemes, such as Improved Spread Spectrum (ISS), Circular
Watermarking (CW), and Natural Watermarking (NW). Some of these schemes
have revealed various security issues. On the contrary, it has been proven in [14]
that the Natural Watermarking technique is stego-secure. This stego-security is
one of the security classes defined in [14], where probabilistic models are used
to categorize the security of data hiding algorithms in the Watermark Only
Attack (WOA) framework.

We have explained in our previous research works [9] that any algorithm
can be rewritten as an iterative process, leading to the possibility to study its
topological behavior. As a concrete example, we have shown that the security
level of some information hiding algorithms (of the spread-spectrum kind) can
be studied into a novel framework based on unpredictability, as it is understood
in the mathematical theory of chaos [9]. The key idea motivating our research
works is that: if artificial intelligence (AI) tools seem to have difficulties to deal
with chaos, then steganalyzers (software based on AI that try to separate orig-
inal from stego-contents) may be proven defective against chaotic information
hiding schemes. Our work has thus constituted in showing theoretically that
such chaotic schemes can be constructed. We are not looking to struggle with
best available information hiding techniques and we do not focus on effective
and operational aspects, as our questioning are more locating in a conceptual
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domain. Among other things, we do not specify how to chose embedding coef-
ficients, but the way to insert the hidden message in a selection of these “least
significant coefficient” in an unpredictable manner. To say this another way, our
intention is not to realize an hidden channel that does not appear as sleazy to
a steganalyzer, but to construct an information hiding scheme whose behavior
cannot be predicted: supposing that the adversary has anything (algorithm,
possible embedding coefficient, etc.) but the secret key, we want to determine
if he can predict which coefficients will be finally used, and in which order. To
do so, a new class of security has been introduced in [7], namely the topological
security. This new class can be used to study some categories of attacks that
are difficult to investigate in the existing security approach. It also enriches
the variety of qualitative and quantitative tools that evaluate how strong the
security is, thus reinforcing the confidence that can be added in a given scheme.

In addition of being stego-secure, we have proven in [23] that Natural Wa-
termarking (NW) technique is topologically secure. Moreover, this technique
possesses additional properties of unpredictability, namely, strong transitivity,
topological mixing, and a constant of sensitivity equal to N

2 [22]. However NW
are not expansive, which is in our opinion problematic in the Constant-Message
Attack (CMA) and Known Message Attack (KMA) setups, when we consider
that the attacker has all but the embedding key [22]. Since these initial investi-
gations, our research works in that information hiding field have thus consisted
in searching more secure schemes than NW, regarding the concerns presented
in the first paragraph of this introduction. The objective of this review paper
is to list the results obtained by following such an approach.

This article is organized as follows. Notations and terminologies are firstly
recalled in the next section. Then the formerly published CIW1 chaotic itera-
tion based one-bit watermarking process is recalled in detail in Section 3. Its
steganographic version CIS2 is then explained in Section 4, while Section 5
presents the DI3 process, whose aims is to merge the two previous approaches.
This review article of chaotic iterations based information hiding algorithms
ends by a conclusion section containing intended future works.

2 Notations and Terminologies
In what follows, B denotes the Boolean set {0, 1}, Sn stands for the nth term
of a sequence S, Vi is for the ith component of a vector V , and J0;NK is the
integer interval {0, 1, . . . , N}.

Compléter éventuellement les notations.

2.1 The mathematical theory of chaos
From a mathematical point of view, deterministic chaos has been thoroughly
studied these last decades, with different research works that have provided var-
ious definitions of chaos. Among these definitions, the one given by Devaney [16]
is perhaps one of the most established ones.
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Consider a topological space (X , τ) and a continuous function f on X . Topo-
logical transitivity occurs when, for any point, any neighborhood of its future
evolution eventually overlap with any other given region. More precisely,

Definition 1 f is said to be topologically transitive if, for any pair of open
sets U, V ⊂ X , there exists k > 0 such that fk(U) ∩ V 6= ∅.

This property implies that a dynamical system cannot be broken into simpler
subsystems. It is intrinsically complicated and cannot be simplified. Besides, a
dense set of periodic points is an element of regularity that a chaotic dynamical
system has to exhibit.

Definition 2 An element (a point) x is a periodic element (point) for f of
period n ∈ N∗, if fn(x) = x.

Definition 3 f is said to be regular on (X , τ) if the set of periodic points for
f is dense in X : for any point x in X , any neighborhood of x contains at least
one periodic point.

This regularity “counteracts” the effects of transitivity. Thus, due to these
two properties, two points close to each other can behave in a completely dif-
ferent manner, leading to unpredictability for the whole system. Then,

Definition 4 (Devaney’s chaos) f is said to be chaotic on (X , τ) if f is reg-
ular and topologically transitive.

The chaos property is related to the notion of “sensitivity”, defined on a
metric space (X , d) by:

Definition 5 f has sensitive dependence on initial conditions if there exists
δ > 0 such that, for any x ∈ X and any neighborhood V of x, there exist y ∈ V
and n ≥ 0 such that d (fn(x), fn(y)) > δ.

δ is called the constant of sensitivity of f .

Indeed, Banks et al. have proven in [11] that when f is chaotic and (X , d)
is a metric space, then f has the property of sensitive dependence on initial
conditions (this property was formerly an element of the definition of chaos).

2.2 Chaotic iterations and watermarking scheme
Let us consider a system with a finite number N ∈ N∗ of cells, so that each cell
has a Boolean state. A sequence which elements belong into J1; NK is a strategy.
Finally, the set of all strategies is denoted by J1,NKN.

Definition 6 The set B denoting {0, 1}, let f : BN −→ BN be a function and
S ∈ J1,NKN. The chaotic iterations (CIs) are defined by x0 ∈ BN and

∀n ∈ N∗,∀i ∈ J1; NK, xni =
{
xn−1
i if Sn 6= i(
f(xn−1)

)
Sn if Sn = i.
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In other words, at the nth iteration, only the Sn−th cell is “iterated”. Let
us now recall how to define a suitable metric space where chaotic iterations are
continuous [10].

Let δ be the discrete Boolean metric, δ(x, y) = 0⇔ x = y. Given a function
f , define the function:

Ff : J1; NK×BN −→ BN

(k,E) 7−→
(
Ej .δ(k, j) + f(E)k.δ(k, j)

)
j∈J1;NK

Consider the phase space X = J1; NKN ×BN, and the map defined on X by:

Gf (S,E) = (σ(S), Ff (i(S), E)) , (1)

where σ : (Sn)n∈N ∈ J1,NKN −→ (Sn+1)n∈N and i : (Sn)n∈N ∈ J1,NKN −→ S0.
Then chaotic iterations can be described by the following discrete dynamical
system: {

X0 ∈ X
Xk+1 = Gf (Xk). (2)

To study whether this dynamical system is chaotic [16], a distance between
X = (S,E), Y = (Š, Ě) ∈ X has been introduced in [10] as follows: d(X,Y ) =
de(E, Ě) + ds(S, Š), where

• de(E, Ě) =
N∑
k=1

δ(Ek, Ěk),

• ds(S, Š) = 9
N

∞∑
k=1

|Sk − Šk|
10k .

This distance has been introduced to satisfy the following requirements. If
the floor value bd(X,Y )c is equal to n, then the systems E, Ě differ in n cells.
In addition, its floating part is less than 10−k if and only if the first k terms of
the two strategies are equal. Moreover, if the kth digit is nonzero, then the kth
terms of the two strategies are different. With this metric, it has been proven
that [10],
Theorem 1 Gf0 is continuous and chaotic in (X , d).

3 The CIW1 Chaotic Iteration basedWatermark-
ing Process

3.1 Using chaotic iterations as information hiding schemes
3.1.1 Presentation of the dhCI process

We have proposed in [4, 23] a data hiding protocol based on chaotic iterations.
The process, referred as dhCI, consisted in iterating Gf0 on least significant co-
efficients of a cover medium. Each property exhibited by the dynamical system
will then be possessed too by the watermarking scheme.
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The same original image was supposed to be shared by the sender and the
receiver, the sender either iterates or not CIs on these coefficients, depending
on whether the binary information to transfer was 0 or 1, while the receiver
computed the differences between its stored image and the received one. For
further explanations, see [4, 23].

The first deepened study of such a dhCI algorithm was published in [8]. The
aims were to prove that a particular instance of the dhCI algorithm, called the
CIW1 process, is stego-secure and topologically secure, to study its qualitative
and quantitative properties of unpredictability, and then to compare it with
Natural Watermarking: the topological study has been realized in [22] while
the stego-security has been proven later in [23]). To be able to recall the CIW1
scheme, we must firstly define the significance of a given coefficient.

3.1.2 Most and least significant coefficients

We first notice that terms of the original content x that may be replaced by
terms taken from the watermark y are less important than other: they could be
changed without be perceived as such. More generally, a signification function
attaches a weight to each term defining a digital media, depending on its position
t.

Definition 7 A signification function is a real sequence (uk)k∈N.

Example 1 Let us consider a set of grayscale images stored into portable graymap
format (P3-PGM): each pixel ranges between 256 gray levels, i.e., is memorized
with eight bits. In that context, we consider uk = 8− (k mod 8) to be the k-th
term of a signification function (uk)k∈N. Intuitively, in each group of eight bits
(i.e., for each pixel) the first bit has an importance equal to 8, whereas the last
bit has an importance equal to 1. This is compliant with the idea that changing
the first bit affects more the image than changing the last one.

Definition 8 Let (uk)k∈N be a signification function, m and M be two reals
s.t. m < M .

• The most significant coefficients (MSCs) of x is the finite vector

uM =
(
k
∣∣ k ∈ N and uk >M and k ≤| x |

)
;

• The least significant coefficients (LSCs) of x is the finite vector

um =
(
k
∣∣ k ∈ N and uk ≤ m and k ≤| x |

)
;

• The passive coefficients of x is the finite vector

up =
(
k
∣∣ k ∈ N and uk ∈]m;M [ and k ≤| x |

)
.

For a given host content x, MSCs are then ranks of x that describe the
relevant part of the image, whereas LSCs translate its less significant parts.
These two definitions are illustrated on Figure 1, where the significance function
(uk) is defined as in Example 1, M = 5, and m = 6.
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(a) Lena. (b) MSCs of Lena. (c) LSCs of Lena (×17).

Figure 1: Most and least significant coefficients of Lena.

3.1.3 Presentation of the CIW1 dhCI scheme

We have proposed in SECRYPT10 [8] to study a particular instance of the dhCI
class, which considers the negation function as iteration mode. The resulting
chaotic iterations watermarking1 process has been denoted by CIW1 in this
publication. It operates as follows. Let:

• (K,N) ∈ [0; 1]×N be an embedding key,

• X ∈ BN be the N least significant coefficients (LSCs) of a given cover
media C,

• (Sn)n∈N ∈ J1,NKN be a strategy, which depends on the message to hide
M ∈ [0; 1] and K,

• f0 : BN → BN be the vectorial logical negation.

So the watermarked media is C whose LSCs are replaced by YK = XN ,
where: {

X0 = X
∀n < N,Xn+1 = Gf0 (Xn) .

In the following section, two ways to generate (Sn)n∈N are given, namely
Chaotic Iterations with Independent Strategy (CIIS) and Chaotic Iterations
with Dependent Strategy (CIDS). In CIIS, the strategy is independent from
the cover media X, whereas in CIDS the strategy will be dependent on X.
These strategies have been introduced in [23]. Their stego-security are studied
in Section 3.2 and their topological security in Section 3.3.2.

1Watermarking means here that only a binary information, like the presence of a copyright,
can be extracted.

6



(a) Original Lena. (b)
Water-
mark.

(c) Watermarked Lena.

Figure 2: Data hiding with chaotic iterations

3.1.4 Examples of strategies

CIIS strategy Let us first introduce the Piecewise Linear Chaotic Map (PLCM,
see [37]), defined by:

Definition 9 (PLCM)

F (x, p) =

 x/p if x ∈ [0; p]
(x− p)/( 1

2 − p) if x ∈
[
p; 1

2
]

F (1− x, p) else.

where p ∈
]
0; 1

2
[
is a “control parameter”. Contrary to well-known chaotic

maps like the logistic map, this PLCM is unbiased and does not present obvious
security flaws [37].

We define the general term of the strategy (Sn)n in CIIS setup by the fol-
lowing expression: Sn = bN×Knc+ 1, where: p ∈

[
0; 1

2
]

K0 = M ⊗K
Kn+1 = F (Kn, p),∀n ≤ N0

in which ⊗ denotes the bitwise exclusive or (XOR) between two floating part
numbers (i.e., between their binary digits representation). Lastly, to be certain
to enter into the chaotic regime of PLCM [37], the strategy can be preferably
defined by: Sn =

⌊
N×Kn+D⌋+ 1, where D ∈ N is large enough.

CIDS strategy The same notations as above are used. We define CIDS
strategy as in [23]: ∀k 6 N ,

• if k 6 N and Xk = 1, then Sk = k,

• else Sk = 1.
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In this situation, if N > N, then only two watermarked contents are possible
with the scheme proposed in Section 3.1, namely: YK = (0, 0, · · · , 0) and YK =
(1, 0, · · · , 0).

Before being able to present the security study we performed on it, we must
firstly recall the notion of security usually considered in information hiding and
its difference with robustness.

3.2 Security versus robustness
3.2.1 Presentation

Even if security and robustness are neighboring concepts without clearly estab-
lished definitions [31], robustness is often considered to be mostly concerned with
blind elementary attacks, whereas security is not limited to certain specific at-
tacks. Indeed, security encompasses robustness and intentional attacks [15,26].
The best attempt to give an elegant and concise definition for each of these two
terms was proposed in [26]. Following Kalker, we will consider in this article
the two following definitions:

Definition 10 (Security [26]) Watermarking security refers to the inability
by unauthorized users to have access to the raw watermarking channel [...] to
remove, detect and estimate, write or modify the raw watermarking bits.

Definition 11 (Robustness [26]) Robust watermarking is a mechanism to
create a communication channel that is multiplexed into original content [...]
It is required that, firstly, the perceptual degradation of the marked content [...]
is minimal and, secondly, that the capacity of the watermark channel degrades
as a smooth function of the degradation of the marked content.

3.2.2 Classification of attacks

In the security framework, attacks have been classified in [14] as follows.

Definition 12 Watermark-Only Attack (WOA) occurs when an attacker has
only access to several watermarked contents.

Definition 13 Known-Message Attack (KMA) occurs when an attacker has ac-
cess to several pairs of watermarked contents and corresponding hidden mes-
sages.

Definition 14 Known-Original Attack (KOA) is when an attacker has access to
several pairs of watermarked contents and their corresponding original versions.

Definition 15 Constant-Message Attack (CMA) occurs when the attacker ob-
serves several watermarked contents and only knows that the unknown hidden
message is the same in all contents.

A synthesis of this classification is given in Table 1.
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Class Original content Stego content Hidden message
WOA ×
KMA × ×
KOA × ×
CMA ×

Table 1: Watermarking attacks classification in context of [26]

3.2.3 Definition of stego-security

In the Simmons’ prisoner problem [38], Alice and Bob are in jail and they want
to, possibly, devise an escape plan by exchanging hidden messages in innocent-
looking cover contents. These messages are to be conveyed to one another by
a common warden named Eve, who eavesdrops all contents and can choose to
interrupt the communication if they appear to be stego-contents.

Stego-security, defined in this well-known context, is the highest security
class in Watermark-Only Attack setup, which occurs when Eve has only access
to several marked contents [14].

LetK be the set of embedding keys, p(X) the probabilistic model ofN0 initial
host contents, and p(Y |K) the probabilistic model of N0 marked contents such
that each host content has been marked with the same key K and the same
embedding function.

Definition 16 (Stego-Security [14]) The embedding function is stego-secure
if ∀K ∈ K, p(Y |K) = p(X) is established.

Stego-security states that the knowledge of K does not help to make the dif-
ference between p(X) and p(Y ). This definition implies the following property:

p(Y |K1) = · · · = p(Y |KNk
) = p(Y ) = p(X)

This property is equivalent to a zero Kullback-Leibler divergence, which is the
accepted definition of the “perfect secrecy” in steganography [13].

3.3 Security evaluation
3.3.1 Evaluation of the stego-security

We have proven in [23] the following proposition.

Proposition 1 CIIS is stego-secure, while CIDS does not satisfy this security
property.

3.3.2 Evaluation of the topological security

To check whether an information hiding scheme S is topologically secure or not,
we have proposed in [23], to write S as an iterate process xn+1 = f(xn) on a
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metric space (X , d). As recalled previously, this formulation is always possible.
So,

Definition 17 An information hiding scheme S is said to be topologically se-
cure on (X , d) if its iterative process has a chaotic behavior according to De-
vaney.

Due to the chaos properties of the so-called chaotic iterations, we have then
deduced in [23] that,

Proposition 2 CIIS and CIDS are topologically secure.

We have then deduced qualitative and quantitative properties of topological
security for this information hiding scheme in [23]: it is expansive (with a con-
stant of expansiveness equal to 1), topologically mixing, etc. These properties
can measure the disorder generated by our scheme, giving by doing so an impor-
tant information about the unpredictability level of such a process, which helps
to compare it to other data hiding methods. Such a comparison is outlined in
the next section [23].

3.4 Comparison between spread-spectrum and chaotic it-
erations

The consequences of topological mixing for data hiding are multiple. Firstly,
security can be largely improved by considering the number of iterations as a se-
cret key. An attacker will reach all of the possible media when iterating without
this key. Additionally, he cannot benefit from a KOA setup, by studying media
in the neighborhood of the original cover. Moreover, as in a topological mixing
situation, it is possible that any hidden message (the initial condition), is sent
to the same fixed watermarked content (with different numbers of iterations),
the interest to be in a KMA setup is drastically reduced. Lastly, as all of the
watermarked contents are possible for a given hidden message, depending on
the number of iterations, CMA attacks will fail.

The property of expansiveness reinforces drastically the sensitivity in the
aims of reducing the benefits that Eve can obtain from an attack in KMA
or KOA setup. For example, it is impossible to have an estimation of the
watermark by moving the message (or the cover) as a cursor in situation of
expansiveness: this cursor will be too much sensitive and the changes will be too
important to be useful. On the contrary, a very large constant of expansiveness
ε is unsuitable: the cover media will be strongly altered whereas the watermark
would be undetectable. Finally, spread-spectrum is relevant when a discrete and
secure data hiding technique is required in WOA setup. However, this technique
should not be used in KOA and KMA setup, due to its lack of expansiveness.

3.5 Lyapunov exponent evaluation
The Lyapunov exponent of the CIW1 algorithm has been computed in [5], to
improve our knowledge of its topological security. It is equal to ln N, where N
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stands for the number of LSCs chosen in the implementation of the algorithm.
To evaluate this Lyapunov exponent, chaotic iterations must be described

by a differentiable function on R. To do so, a topological semiconjugacy be-
tween the phase space X and R has been written. As this proof is simply a
rewriting in the digital watermarking field of an unpublished result on chaotic
iterations obtained in [22], and as Section 4.7 provides a Lyapunov exponent
evaluation for a completely different algorithm, we will not say any more about
this publication.

4 The CIS2 Chaotic Iteration based Stegano-
graphic Process

After the introduction of CIW1 in [23], there were only two information hiding
schemes being both stego-secure and topologically secure. The first one is based
on a spread spectrum technique called Natural Watermarking. It is stego-secure
when its parameter η is equal to 1 [14]. Unfortunately, this scheme is neither
robust, nor able to face an attacker in KOA and KMA setups, due to its lack
of expansiveness [21]. The second scheme both topologically secure and stego-
secure has been presented in the previous section. However, this CIW1 process
allows to embed securely only one bit per embedding parameters. The objective
of [20] was to improve the scheme studied in [23], in such a way that more than
one bit can be embedded. Such a study led to the definition of the CIS2 scheme
presented here.

4.1 The improved algorithm
Let us firstly recall the notations and terminologies introduced in [20].

Definition 18 Let k ∈ N∗. A strategy adapter is a sequence which elements
belong into J0, k− 1K. The set of all strategies with terms in J0, k− 1K is denoted
by Sk.

Intuitively, a strategy-adapter aims at generating a strategy (St)t∈N where
each term St belongs to J1, nK.

Definition 19 Let k ∈ N∗. The initial function is the map ik defined by:

ik : Sk −→ J0, k− 1K
(Sn)n∈N 7−→ S0

Definition 20 Let k ∈ N∗. The shift function is the map σk defined by:

σk : Sk −→ Sk
(Sn)n∈N 7−→ (Sn+1)n∈N

Let us additionally recall the following notations.

• x0 ∈ BN the N least significant coefficients of a given cover media C.
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• m0 ∈ BP is the watermark to embed into x0.

• S1 ∈ SN is a strategy called place strategy, giving the location (LCS)
where to insert the message at each iteration.

• S2 ∈ SP is a strategy called choice strategy, providing which bits from
the message must be inserted at the given iteration.

• Lastly, S3 ∈ SP is a strategy called mixing strategy, as it is required for
chaos to mix the message at each iteration.

The information hiding scheme published in [20] was formerly called Steganog-
raphy by Chaotic Iterations and Substitution with Mixing Message (SCISMM
in short), and has been renamed CIS2 in later publications. It is defined by
∀(n, i, j) ∈ N∗ × J0; N− 1K× J0; P− 1K:

xni =
{
xn−1
i if Sn1 6= i
mSn

2
if Sn1 = i.

mn
j =

{
mn−1
j if Sn3 6= j

mn−1
j if Sn3 = j.

The stego-content is the Boolean vector y = xP ∈ BN.

4.2 Security study of the CIS2

After having introduced the CIS2, we have studied its security in [20].

4.2.1 Stego-security

We have proven in [20] that,

Proposition 3 CIS2 is stego-secure.

Proof 1 See [20].

4.2.2 Topological security

Topological model We have firstly proven in [20] that CIS2 can be modeled
as a dynamical system in a topological space, as follows. Let

F : J0; N− 1K×BN × J0; P− 1K×BP −→ BN

(k, x, λ,m) 7−→
(
δ(k, j).xj + δ(k, j).mλ

)
j∈J0;N−1K

where + and . are the boolean addition and product operations.
Consider the phase space X2 defined as follow:

X2 = SN ×BN × SP ×BP × SP ,
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where SN and SP are the sets introduced in Section 4.1.
We define the map Gf0 : X2 −→ X2 by:

Gf0 (S1, x, S2,m, S3) =

(σN (S1), F (iN (S1), x, iP (S2),m), σP (S2), Gf0(m,S3), σP (S3))

CIS2 can be described by the iterations of the following discrete dynamical
system: {

X0 ∈ X2
Xk+1 = Gf0(Xk).

Then, by comparing X2 and the phase space X formerly introduced in this
document, we have verified in [20] that.

Proposition 4 The phase space X2 has, at least, the cardinality of the contin-
uum.

A new distance on X2 We have defined in [20] a new distance on X2 as
follows: ∀X, X̌ ∈ X2, if X = (S1, x, S2,m, S3) and X̌ = (Š1, x̌, Š2, m̌, Š3), then:

d2(X, X̌) = dBN(x, x̌) + dBP(m, m̌)
+ dSN

(S1, Š1) + dSP
(S2, Š2) + dSP

(S3, Š3).

Continuity of CIS2 To prove that CIS2 is another example of topological
chaos in the sense of Devaney, Gf0 must be continuous on the metric space
(X2, d2). We thus have proven in [20] that,

Proposition 5 Gf0 is a continuous function on (X2, d2).

CIS2 is chaotic Then, in [20], (X2,Gf0) has been proven to be topologically
transitive, regular, and sensitive dependence on initial conditions. We thus have
the result [20]:

Theorem 2 Gf0 is a chaotic map on (X2, d2) in the sense of Devaney.
So we can claim that CIS2 is topologically secure.

4.3 Correctness and completeness studies
Without attack, the CIS2 scheme has to ensure that the user can always extract
a message and that this latter is the watermark, provided the user has the correct
keys. These two demands correspond respectively to the study of completeness
and of correctness for the proposed approach, which have been investigated
in [3]. We have firstly established that,
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Proposition 6 Let =(Sp) be the set (without repetitions) {S1
p , S

2
p , . . . , S

l
p} of

cardinality k, k ≤ l. This set contains all the elements of x that have been
modified along the CIS2 iteration process. Let us consider =(Sc)|D defined by
{Sd1

c , S
d2
c , . . . , S

dk
c } where di is the last iteration that has modified the element

i ∈ =(Sp).
Message can be extracted from the stego-content if and only if =(Sc)|D =

J0; P− 1K.

Under this condition, one bit of index j of the original message m0 is thus
embedded at least twice in xl. By counting the number of times this bit has
been switched in Sm, the value of mj can be deduced in many places. Without
attack, all these values are equal and the message is immediately obtained. After
an attack, the value of mj is obtained as mean value of all its occurrences. The
scheme is thus complete. Notice that if the cover is not attacked, the returned
message is always equal to the original due to the definition of the mean function.

4.4 Deciding whether a possibly attacked media is water-
marked

Let us consider a first media y that is watermarked with a message m and a
second one, namely y′, which is an altered version of y, i.e., where some bits
have been modified. Let m′ be the message that is extracted from y′.

We have checked in [3] how far the extracted message m′ is from m. To
achieve this, we have considered the set M = {i|mi = 1} of the Boolean vector
message m and similarly the set M ′ for the message m′. Most of similarity
measures depend on the functions a, b, c, and d, all from BP × BP to N, and
respectively equal to a(m,m′) = |M ∩M ′|, b(m,m′) = |M \M ′|, c(m,m′) =
|M ′\M |, and d(m,m′) = |M∩M ′| (|S| and S respectively denote the cardinality
and the complementary of any set S). In what follows a, b, c, and d respectively
stand for a(m,m′), b(m,m′), c(m,m′), and d(m,m′).

According to [35] the Fermi-Dirac measure SFD is the one that has the high-
est discrimination power, i.e., which allows a clear separation between correlated
vectors and uncorrelated ones. The measure is recalled hereafter with respect
to the previously defined scalars a, b, and c.

SFD(ϕ) =
FFD(ϕ)− FFD(π2 )
FFD(0)− FFD(π2 ) ,

FFD(ϕ) = 1

1 + exp(ϕ− ϕ0

γ
)
,

where ϕ = arctan(b+ c

a
), ϕ0 is π/4, and γ is 0.1.

The distance between m and m′ is then computed in [3] as 1− SFD(m,m′)
and is thus a real number in [0; 1]. We have proposed in [3] that, if such a
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distance is lower than a given threshold, y′ will be declared as watermarked
and not watermarked otherwise. Next section presents a practical robustness
evaluation of CIS2 using this decision rule.

4.5 Robustness study of the process
This section is devoted to the recall of the robustness study of the CIS2 scheme
realized in [3]. For the whole experiments, a set of 100 images has been ran-
domly extracted from the database taken from the BOSS contest [34]. In this
set, each cover is a 512×512 grayscale digital image. The considered watermark
m is given in Fig. 2(b). Testing the robustness of the approach is achieved by
successively applying on watermarked images attacks like cropping, compres-
sion, geometric transformations,. . . Differences between m and m′ have been
computed as described in the previous section.

We have firstly evaluate the robustness of the CIS2 approach by applying
different percentages of cropping, from 0.25% to 90%. Results are recalled in
Fig. 3, which presents effects of such an attack. All the percentage differences
are so far less than 97% and thus robustness is established.

Figure 3: Cropping Results

Robustness against compression has then been addressed in [3], by study-
ing both JPEG and JPEG 2000 image compressions. Results are respectively
presented in Fig. 4(a) and Fig. 4(b). It is not hard to see that robustness is
well established for JPEG2000 compression: for all the ratios larger than 10%,
the watermark is retrieved. However, as stated in [3], this scheme is not robust
against JPEG compression for a ratio inferior to 90%. Remark that a potential
solution can be to insert the watermark in least significant coefficient of the
image described in frequency domain, for instance using either discrete cosine
or with wavelet transform.

Among geometric transformations, we then focused on rotations, i.e., when
two opposite rotations of angle θ are successively applied around the center
of the image. In these geometric transformations, angles range from 2 to 60
degrees. Results are presented in Fig. 5: thanks to an efficient embedding, our
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(a) JPEG Effect (b) JPEG 2000 Effect

Figure 4: Compression Results

scheme is resistant to all that type of attacks.

Figure 5: Rotation Attack Results

The first step of the CIS2 scheme studied in this subsection has defined x
as the LSBs of the host image, it is thus based on LSB modifications. We have
then considered in [3] two types of attacks modifying these LSB sets (see Fig 6).
The former consists in setting to zero a subset of this one. Results are expressed
in Fig. 6(a) and show that the scheme is robust, unless 95% of the LSB is erased.
In this case the image is really damaged. The latter consists in applying again
this scheme on the watermarked image but with another message. Results of
Fig. 6(b) show that this scheme is robust against that type of attack, provided
the number of iterations is lesser than 1.75 times the number of pixels. With
more iterations, the image is dramatically modified: more than 50% of the LSB
is switched.

4.6 Evaluation of the embeddings
A Receiver Operating Characteristic (ROC) approach has finally been imple-
mented in [3], to find the most adapted threshold w.r.t. the separation between

16



(a) LSB erasing effects (b) Applying algorithm twice

Figure 6: LSB Modifications

watermarked images and other ones.

Figure 7: ROC Curves for DWT or DCT Embeddings

Figure 7 recalls the obtained ROC curve. This latter is close to the ideal one
that is without False Positive and False Negative answer. The threshold with
best results is a distance equal to 0.97. With such a value, we can give some
confidence intervals for most of evaluated attacks. The approach is resistant to
all the cropping where percentage is less than 90%, to a JPEG2000 compression
where quality ratio is greater than 5%, to all the rotation attacks, and to LSB
erasing when less than 95% LSBs are set to 0.

4.7 Lyapunov evaluation of CIS2

We finally close the study of the CIS2 process by recalling the way we evaluated
its Lyapunov exponent in Secrypt13 [6].
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4.7.1 A topological semi-conjugacy between X2 and R

In this section, by using a topological semi-conjugacy, we recall that CIS2 mod-
eled by Gf0 on X can be described as iterations on a real interval. To do so,
new notations and terminologies must be introduced.

Let X(N;P) = SN × BN × SP × BP × SP . In what follows and for easy
understanding, we will assume that N = 3 and P = 2. So N + P = 5 and
NP2 = 12. However, an equivalent formulation of the following can be easily
obtained by replacing the bases 5 and 12 by any base (N + P) and (NP2). N has
only to be greater than P.

Definition 21 The function ψ : J1,NK×J1,PK×J1,PK→ J0,NP2−1K is defined
by: ψ

(
Sip, S

i
c, S

i
m

)
= (Sip − 1)P2 + (Sic − 1)P + (Sim − 1).

This function aims to convert a strategy of triplets in a simple strategy of
integers expressed in a different basis, see Table 2. Obviously, ψ is a bijective
function, the reverse operation will be denoted by ψ−1. The three projections
of ψ−1 are denoted by: ψ−1

1
(
ψ
(
Sip, S

i
c, S

i
m

))
= Sip, ψ−1

2
(
ψ
(
Sip, S

i
c, S

i
m

))
= Sic,

and ψ−1
3
(
ψ
(
Sip, S

i
c, S

i
m

))
= Sim.

Base Base Base Base
N = 3 P = 2 P = 2 NP2 = 12
Sip Sic Sim ψ

(
Sip, S

i
c, S

i
m

)
1 1 1 0
1 1 2 1
1 2 1 2
1 2 2 3
2 1 1 4
2 1 2 5
2 2 1 6
2 2 2 7
3 1 1 8
3 1 2 9
3 2 1 10
3 2 2 11

Table 2: Some values for ψ (see Definition 21).

Definition 22 Let us define ϕ : X(3;2) = S3×B3×S2×B2×S2 −→
[
0, 25[, as fol-

lows. If (Sp, E, Sc,M, Sm) =
(
(S0
p , S

1
p , . . .); (E0, E1, E2, E3); (S0

c , S
1
c , . . .); (M0,M1); (S0

m, S
1
m, . . .)

)
,

then ϕ (Sp, E, Sc,M, Sm) is the real number:

• whose integral part e is
2∑
k=0

24−kEk +
4∑
k=3

24−kMk−3, that is, the binary

digits of e are E0 E1 E2 M0 M1.
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• whose decimal part s is equal to: s = 0, ψ
(
S0
p , S

0
c , S

0
m

)
ψ
(
S1
p , S

1
c , S

1
m

)
ψ
(
S2
p , S

2
c , S

2
m

)
. . .

=
∑+∞
k=1 12−kSk−1. s is thus expressed in base 12.

As notified in [6], ϕ realizes the association between a point of X(3;2) and
a real number into

[
0, 25[. We must now translate the steganographic process

CIS2, which is represented by Gf0 , as iterations on this real interval. To do so,
two intermediate functions over

[
0, 25[ denoted by e and s has been introduced

in [6].

Definition 23 Let x ∈
[
0, 25[ and:

• e0, . . . , e4 the binary digits of the integral part of x: bxc =
4∑
k=0

24−kek.

• (sk)k∈N the digits of x, expressed in base 12, where the chosen decimal
decomposition of x is the one that does not have an infinite number of 11:

x = bxc+
+∞∑
k=0

sk12−k−1.

e and s are thus defined as follows:

e :
[
0, 25[ −→ B3 ×B2

x 7−→ ((e0, e1, e2); (e3, e4))

and
s :

[
0, 25[ −→ J0, 11KN
x 7−→ (sk)k∈N

We have thus been able to define the function g, whose goal is to translate
the steganographic process CIS2 represented by Gf0 on an interval of R [6].

Definition 24 g :
[
0, 25[ −→ [

0, 25[ is such that g(x) is the real number of[
0, 25[ defined below:

• its integral part has a binary decomposition equal to e′0, . . . , e′4, with ∀i ∈
J0, 2K:

e′i =
{

e(x)i if i 6= ψ−1
1
(
s0)

e(x)2+ψ−1
2 (s0) if i = ψ−1

1
(
s0)

and ∀i ∈ J3, 4K:

e′i =
{
e(x)i if i 6= ψ−1

3
(
s0)

e(x)i + 1 (mod 2) if i = ψ−1
3
(
s0) ,

• whose decimal part is s(x)1, s(x)2, . . .
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In other words, if x =
4∑
k=0

24−kek +
+∞∑
k=0

sk 12−k−1, then:

g(x) =
2∑
k=0

24−k
[
ek
(
δ(k, ψ−1

1 (s0)) + 1 (mod 2)
)

+ e2+ψ−1
2 (s0)

(
δ(k, ψ−1

1 (s0))
)]

+
4∑
k=3

24−k(ek + δ(k, ψ−1
3 (s0) (mod 2)) +

+∞∑
k=0

sk+112−k−1,

where δ is the discrete Boolean metric introduced previously.
Numerous metrics can be defined on the set

[
0, 25[, the most usual one being

the Euclidian distance ∆(x, y) = |y − x|2. However, this Euclidian distance
does not reproduce exactly the notion of proximity induced by distance d2 on
X2 introduced in a previous section, which is more relevant for the targetted
applications. Indeed d2 is richer than ∆, this is why we have introduced the
following map in [6].

Definition 25 Given x, y ∈
[
0, 25[, D denotes the function from

[
0, 25[2 to R+

defined by: D(x, y) = De (e(x), e(y)) +Ds (s(x), s(y)), where:

De(e, ě) =
4∑

k=0
δ(ek, ěk), and Ds(s, š) =

∞∑
k=1

|sk − šk|
12k .

We have thus proven in [6] that,

Proposition 7 D is a distance on
[
0, 25[.

The convergence of sequences according to D is not the same than the usual
convergence related to the Euclidian metric. For instance, if xn → x according
to D, then necessarily the integral part of each xn is equal to the integral part
of x (at least after a given threshold), and the decimal part of xn corresponds to
the one of x “as far as required”. D is richer and more refined than the Euclidian
distance, and thus is more precise.

ϕ has been constructed in order to be continuous and onto, so we obtained
the following theorem in [6].

Theorem 3 The steganographic process CIS2 represented by (Gf0 ,X2) can be
considered as simple iterations on R, which is illustrated by the semi-conjugacy
given below: (

X(3;2), d2
) Gf0−−−−→

(
X(3;2), d2

)
ϕ

y yϕ( [
0, 25[, D )

−−−−→
g

( [
0, 25[, D )

In other words, X2 is approximately equal to
[
0, 2N+P[. We have thus re-

marked in [6] that,
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Proposition 8 The process CIS2 represented by g defined on R has deriva-
tives of all orders on

[
0, 25[, except on the 385 points in I defined by: I ={ n

12
/
n ∈ J0; 25 × 12K

}
.

Furthermore, on each interval of the form
[
n

12 ,
n+ 1

12

[
, with n ∈ J0; 25×12J,

g is a linear function having a slope equal to 12: ∀x /∈ I, g′(x) = 12.

We are now able to recall the way to evaluate the Lyapunov exponent of
CIS2.

4.7.2 Topological security of CIS2 on R

CIS2 represented by the function Gf0 on X2 is topologically secure, that is
to say (Gf0 ,X2) is chaotic in the sense of Devaney. We can deduce the same
property for CIS2 represented by the g function on R for the order topology.
Indeed (Gf0 ,X2) and

(
g, [0, 25[D

)
are semi-conjugate by ϕ as recalled below.

So
(
g, [0, 25[D

)
is a chaotic system according to Devaney, because the semi-

conjugacy preserves this character [17]. However the topology generated by D
is finer than the topology generated by the Euclidean distance ∆, which is the
order topology. This is why we have proven in [6] that,

Theorem 4 Let X be a set, and τ, τ ′ two topologies on X such that τ ′ is finer
than τ . Let f : X → X , continue for both τ and τ ′.

If (Xτ ′ , f) is chaotic in the sense of Devaney, then (Xτ , f) is also chaotic.

Finally, according to Theorem 4, we have deduced in [6] that the stegano-
graphic process CIS2 represented by g is chaotic in the sense of Devaney, for the
order topology on R. Having these assertions in mind, we have then formulated
the following theorem:

Theorem 5 The steganographic process CIS2 represented by g on R is chaotic
in the sense of Devaney, when the usual topology of R is used (the order topol-
ogy).

This result is weaker than Theorem 2, which establishes the chaotic property
of CIS2 for a finer topology. It is as if the chaos observed using usual tools like
the Euclidian distance is still preserved when considering more powerful tools
(higher resolution, i.e., finer topologies). The result contained in Theorem 5 is
however interesting, as it confirms that approach followed in [6] does not lead
to deflated properties.

Indeed, our studies take place in a system other than the one usually con-
sidered in computer science (X2 instead of R), in order to be as close as possible
to the targetted computer machines. By doing so, we prevent from any loss of
chaotic properties when computing the scheme written in mathematical terms.
However, it might be feared that the choice of a discrete mathematics approach
leads to a disorder of lower quality. In other words, perhaps we have avoided
a situation of great disorder lost during the computation into finite machines.

21



But the cost of such success may be to obtain a weaker disorder ? Theorem 5
proves exactly the contrary.

4.7.3 Evaluation of the Lyapunov exponent

Let L =
{
x0 ∈

[
0, 25[ / ∀n ∈ N, xn /∈ I}, where I is the set of points in the

real interval where g is not differentiable (as it is explained in Proposition 8).
Then [6].

Theorem 6 ∀x0 ∈ L, the Lyapunov exponent of CIS2 having x0 for initial
condition is equal to λ(x0) = ln(12) > 0.

Rem 1 The set of initial conditions for which this exponent is not calculable is
countable. This is indeed the initial conditions such that an iteration value will
be a number having the form n

12 , with n ∈ N. Moreover, for a system having
N + P cells (a number of LSCs equal to N and a secret message to embed of
width equal to P), we will find, mutatis mutandis, an infinite uncountable set of
initial conditions x0 ∈

[
0; 2N+P[ such that λ(x0) = ln(NP2).

So, it is possible to make the Lyapunov exponent of the scheme CIS2 as
large as possible, depending on the number of least significant coefficients of the
cover media we decide to consider, and on the width of the message to embed.
As proven in [23], a large Lyapunov exponent makes it impossible to achieve
the well-known “Estimated Original Attacks” [14].

5 The DI3 Steganographic Process
In [1,2], a new steganographic algorithm named DI3 is presented. It is inspired
from CIW1 and CIS2 respectively published in [20] and [23], and recalled previ-
ously in this article. Compared to the first one, DI3 is a steganographic scheme,
not just a watermarking technique. That is, in our understanding, it can embed
more than one bit. Unlike CIS2, which requires embedding keys with three
strategies, only one sequence is required for DI3, so it is easier to implement.
Indeed DI3 is a faster instance of CIS2, as there is no message mixing in it. DI3
is well-defined mathematically and its security is evaluated in [1], whereas [2]
provides algorithms and investigates its robustness, comparing it to some well-
known watermarking schemes, namely the YASS [39], nsF5 [19], MMx [28], and
HUGO [32] algorithms detailed in the Appendix 7.

5.1 Mathematical definitions and notations
New notations and terminologies must be introduced another time in order to
be able to define mathematically the DI3 steganographic process. They are
provided thereafter.
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Definition 26 The support of a finite sequence S of n terms is the finite set
S(S) =

{
Sk, k < n

}
containing all the distinct values of S. Its cardinality is s.t.

#S(S) 6 n.

Definition 27 A finite sequence S ∈ SN of n terms is injective if n = #S(S).
It is onto if N = #S(S). Finally, it is bijective if and only if it is both injective
and onto, so n = N = #S(S).

“S is injective” reflects the fact that all the n terms of the sequence S are
distinct, while “S is onto” means that all the values of the set J1; NK are reached
at least once.

5.2 The new DI3 process
In this section, the new algorithm introduced in [1] and studied in [2] is recalled.
Let P ∈ N∗ be the width, in term of bits, of the message to embed into the
cover media. λ ∈ N∗ is the number of iterations to realize, which is s.t. λ > P.
x0 ∈ BN is for the N LSCs of a given cover media C supposed to be uniformly
distributed. m ∈ BP is the message to hide into x0. Finally, S ∈ SP is a strategy
such that the finite sequence

{
Sk, k ∈ Jλ− P + 1;λK

}
is injective.

Rem 2 The width P of the message to hide into the LSCs of the cover media
x0 has to be far smaller than the number of LSCs.

The proposed information hiding scheme is defined by:

Definition 28 (DI3 Data hiding scheme) ∀(n, i, j) ∈ N∗ × J0; N− 1K ×
J0; P− 1K:

xni =
{
xn−1
i if Sn 6= i
mSn if Sn = i.

The stego-content is the Boolean vector y = xλ ∈ BN, which will replace the
former LSCs, that is, LSCs of the cover media are replaced by the vector y.

5.3 Security study
A security study of the DI3 steganographic process has been realized in [1].
Conclusion of this study is summarized thereafter.

Proposition 9 DI3 is stego-secure.

This proof of this proposition, provided in [1], holds for the following restric-
tive hypotheses:

Distribution of LSCs. We have supposed that x0 ∼ U
(
BN) to prove the

stego-security of the data hiding process DI3. This hypothesis of the uni-
form distribution of the least significant coefficients is obviously the most
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restrictive one, but it can be obtained at least partially in two possible
manners. Either a channel that appears to be random (for instance, when
applying a chi squared test or for test batteries) can be found in the media.
Or a systematic process can be applied on the images to obtain this uni-
formity, as follows. Before embedding the hidden message, all the original
LSCs must be replaced by randomly generated ones, hoping so that such
cover media will be considered to be noisy by any given attacker. Let us
remark that, in the field of data anonymity for privacy on the Internet, we
are in the “watermark-only attack” framework. As it has been recalled in
Table 1, in that framework, the attacker has only access to stego-contents,
having so no knowledge of the original media (i.e., before introducing the
message in the LSCs random channel).

Distribution of the messages m. In order to prove the stego-security of the
data hiding process DI3, we have supposed that m ∼ U

(
BP). This hy-

pothesis of the uniform distribution of the message to hide is not really
restrictive. Indeed, to encrypt the message before its embedding into the
LSCs of cover media, which is usually required for obvious security rea-
sons, is sufficient to achieve this goal. To say it different, in order to be
in the conditions of applications of the process DI3, the hidden message
must be encrypted.

Distribution of the strategies S. To prove the stego-security of the data
hiding process DI3, we have finally supposed that S ∼ U (SP). This
hypothesis is not restrictive too, as any cryptographically secure pseudo-
random generator (PRNG) satisfies this property. With such PRNGs, it
is impossible in polynomial time, to make the distinction between random
numbers and numbers provided by these generators. For instance, Blum
Blum Shub (BBS) [25], Blum Goldwasser (BG) [40], or ISAAC [24] are
convenient here.

After this theoretical study of the DI3 steganographic process realized in [1],
we have investigated practical aspects, discussing about its concrete implemen-
tation and evaluating its robustness in [2], while article [1] already mentioned
deals with its ability to face steganalyzers. These practical aspects are summa-
rized below.

5.4 Implementing the DI3 scheme
In the algorithms recalled here, the following notations are used: S denotes
the embedding and extraction strategy, H the host content or the stego-content
depending of the context. LSC stands for the old or new LSCs of the host or
stego-content H depending of the context too. N denotes the number of LSCs,
λ the number of iterations to realize, M the secret message, and P the width
of the message (number of bits).

The DI3 scheme theoretically presented in [1] has been practically described
by three main algorithms in [2]:
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1. Algorithm 1 generates the embedding strategy, part of the embedding key
(with the LSCs and the number of iterations).

2. Algorithm 2 embeds the message into the LSCs of the cover media using
the strategy. The strategy has been generated by the first algorithm and
the same number of iterations is used.

3. Algorithm 3 extracts the secret message from the LSCs of the media
(the stego-content) using the strategy, which constitutes with the mes-
sage length the extraction key.

Two other complementary functions must be used:

1. Algorithm 4, which allows to extract MSCs, LSCs, and passive coefficients
from the host content. Its implementation is based on the concept of
signification function described previously.

2. Algorithm 5 rebuilds the new host content (the stego-content) from the
corresponding MSCs, LSCs, and passive coefficients. This function realizes
the opposite operation of Algorithm 4.

Rem 3 These two algorithms depend of the definition of the MSCs, LSCs, and
passive coefficients, which can correspond to a spatial or frequency description
of the host content. This is why they are not documented here.

Algorithm 1: strategy(N,P, λ)
/* S is a sequence of integers into J0, P − 1K, such that

(Sn0 , . . . , Sn0+P−1) is injective on J0, P − 1K. */
Result: S: The strategy, integer sequence (S0, S1, . . .).
begin

n0 ←− L− P + 1;
if P > N OR n0 < 0 then

return ERROR
S ←− Array of width λ, all values initialized to 0;
cpt←− 0;
while cpt < n0 do

Scpt ←−Random integer in J0, P − 1K.;
cpt←− cpt+ 1;

A←− We generate an arrangement of J0, P − 1K;
for k ∈ J0, P − 1K do

Sn0+k ←− Ak;
return S
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Algorithm 2: embed(LSC,M,S, λ)
Result: New LSCs with embedded message.
begin

N ←− Number of LSCs in LSC;
P ←− Width of the message M ;
for k ∈ J0, λK do

i←− Sk;
LSCi ←−Mi;

return LSC

Algorithm 3: extract(LSC, S, λ, P )
Result: The message to extract from LSC.
begin

RS ←− The strategy S written in reverse order.;
M ←− Array of width P , all values initialized to 0;
for k ∈ J0, λK do

i←− RSk;
Mi ←− LSCi;

return M

5.5 Evaluation against steganalyzers
The steganographic scheme detailed in [1] has been compared to state of the
art steganographic approaches, namely YASS [39], HUGO [32], and nsF5 [19]
detailed in the Appendix 7. This study, realized in [1], is summarized thereafter.

The steganalysis is based on the BOSS image database [12], which consists
in a set of 10 000 512x512 greyscale images. We have randomly selected 50 of
them to compute the cover set. Since YASS and nsF5 are dedicated to JPEG
support, all these images have been firstly translated into JPEG format thanks
to the mogrify command line. To allow the comparison between steganographic
schemes, the relative payload is always set with 0.1 bit per pixel. Under that
constrain, the embedded message m is a sequence of 26214 randomly generated
bits. This step has led to distinguish four sets of stego contents, one for each
steganographic approach.

We have next used in [1] the steganalysis tool developed by the HugoBreakers
team [29, 30] based on AI classifier and which won the BOSS competition [12].
Table 3 summarizes these steganalysis results expressed as the error probabilities
of the steganalyser, as they are given in [1]. The errors are the mean of the false
alarms and of the missed detection. An error that is closed to 0.5 signifies that
deciding whether an image contains a stego content is a random choice for the
steganalyser. Conversely, a tiny error denotes that the steganalyser can easily
classify stego content and non stego content.

The best result is obtained by HUGO, which is closed to the perfect stegano-
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Algorithm 4: significationFunction(H)
Data: H: The original host content.
Result: MSC: MSCs of the host content H.
Result: PC: Passive coefficients of the host content H.
Result: LSC: LSCs of the host content H.
begin

/* Implemented by the user. */
return (MSC,PC,LSC)

Algorithm 5: buildFunction(MSC,PC,LSC) )
Result: H: The new rebuilt host content.
begin

/* Implemented by the user. */
return (MSC,PC,LSC)

graphic approach to the considered steganalyser, since the error is about 0.5.
However, even if the approach detailed in [1] has no optimization, these first
experiments shown promising results.

5.6 Robustness study
This section summarizes the robustness study presented in [2]. Each experiment
is build another time on a set of 50 images, which are randomly selected among
database taken from the BOSS contest [12]. Each cover is a 512× 512 greyscale
digital image. The relative payload is always set with 0.1 bit per pixel. Un-
der that constrain, the embedded message m still remains a sequence of 26214
randomly generated bits.

According to previous similar work in the field of information hiding, we have
conducted in [2] our evaluation following a same canvas than other robustness
studies documented previously in this article. We have firstly chosen some
classical attacks like cropping, compression, and rotation ones. The robustness
of DI3 has then been tested by successively applying on stego content these
attacks. Differences between the message that is extracted from the attacked
image and the original one are then computed and expressed as percentage.

Different percentage of cropping (from 1% to 81%) have been firstly applied
on the stego image in [2], Fig. 8 (c) recalls effects of such attacks. We have then
addressed robustness against JPEG and JPEG 2000 compression, and results
are summarized in Fig. 8 (a-b). Attacks based on geometric transformations
have finally been addressed through rotations: as presented previously in this
article, two opposite rotations of angle θ are successively applied around the
center of the image. In these geometric transformations, angles range from 2 to
20 degrees. Effects of such attacks are also recalled in Fig. 8 (d).
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Steganographic Tool DI3 YASS HUGO NsF5
Error Probability 0.4133 0.0067 0.495 0.47

Table 3: Steganalysis results of HugoBreakers steganalyser applied on stegano-
graphic scheme

From all these experiments, one can conclude that the steganographic scheme
does not present obvious drawback and resists to all the attacks: all the per-
centage differences are so far less than 50%.

All researches presented in previous sections have started from the CIW1
process, proceeding by successively correcting its drawbacks. By doing so, we
have had a retreat from chaotic iterations. At the same time, the chaotic iter-
ations based information hiding (dhCI) process, whose the CIW1 scheme his-
torically arises from, continued to be investigated in parallel. Results of these
investigations are detailed in the next section.

6 Conclusion

7 Appendix
We recall in this appendix some state of the art information hiding schemes.
One should find more details in [18].

7.1 YASS
YASS (Yet Another Steganographic Scheme) [39] is a steganographic approach
dedicated to JPEG cover. The main idea of this algorithm is to hide data into
8×8 randomly chosen inside B×B blocks (where B is greater than 8) instead of
choosing standard 8× 8 grids used by JPEG compression. The self-calibration
process commonly embedded into blind steganalysis schemes is then confused by
the approach. In the paper [36], further variants of YASS have been proposed
simultaneously to enlarge the embedding rate and to improve the randomization
step of block selecting. More precisely let be given a message m to hide, a size
B, B ≥ 8, of blocks . The YASS algorithm follows:

1. computation of m′ which is the Repeat-Accumulate error correction code
of m

2. in each big block of size B ×B of cover, successively:

(a) random selection of an 8× 8 block b using w.r.t. a secret key.
(b) two-dimensional DCT transformation of b and normalisation of coeffi-

cient w.r.t a predefined quantization table. Matrix is further referred
to as b′.
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(a) JPEG effect.
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(b) JPEG 2000 effect.
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(c) Cropping attack.
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(d) Rotation attack.

Figure 8: Robustness of DI3 scheme facing several attacks (50 images from the
BOSS repository)

(c) a fragment of m′ is embedded in some LSB of b′. Let b′′ be the
resulting matrix.

(d) The matrix b′′ is decompressed back to the spatial domain leading to
a new B ×B block.

7.2 nsF5
The nsF5 algorithm [19] extends the F5 algorithm [41]. Let us first have a closer
look on this latter

First of all, as far as we know, F5 is the first steganographic approach that
solves the problem of remaining unchanged a part (often the end) of the file.
To achieve this, a subset of all the LSB is computed thanks to a pseudorandom
number generator seeded with a user defined key. Next, this subset is split
into blocks of x bits. The algorithm takes benefit of binary matrix embedding
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to increase it efficiency. Let us explain this embedding on a small illustrative
example where a part m of the message has to be embedded into this x LSB of
pixels which are respectively a 3 bits column vector and a 7 bits column vector.
Let then H be the binary Hamming matrix

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


The objective is to modify x to get y s.t. m = Hy. In this algebra, the sum and
the product respectively correspond to the exclusive or and to the and Boolean
operators. If Hx is already equal to m, nothing has to be changed and x can
be sent. Otherwise we consider the difference δ = d(m,Hx) which is expressed
as a vector :

δ =

 δ1
δ2
δ3

 where δi is 0 if mi = Hxi and 1 otherwise.

Let us thus consider the jth column of H which is equal to δ. We denote by
xj the vector we obtain by switching the jth component of x, that is, xj =
(x1, . . . , xj , . . . , xn). It is not hard to see that if y is xj , then m = Hy. It is
then possible to embed 3 bits in only 7 LSB of pixels by modifying on average
1−23 changes. More generally, the F5 embedding efficiency should theoretically
be p

1−2p .
However, the event when the coefficient resulting from this LSB switch be-

comes zero (usually referred to as shrinkage) may occur. In that case, the
recipient cannot determine whether the coefficient was -1, +1 and has changed
to 0 due to the algorithm or was initially 0. The F5 scheme solves this problem
first by defining a LSB with the following (not even) function:

LSB(x) =
{

1− x mod 2 if x < 0
x mod 2 otherwise. .

An next, if the coefficient has to be changed to 0, the same bit message is
re-embedded in the next group of x coefficient LSB.

The scheme nsF5 focuses on steps of Hamming coding and ad’hoc shrinkage
removing. It replaces them with a wet paper code approach that is based on
a random binary matrix. More precisely, let D be a random binary matrix of
size x × n without replicate nor null columns: consider for instance a subset
of {1, 2x} of cardinality n and write them as binary numbers. The subset is
generated thanks to a PRNG seeded with a shared key. In this block of size x,
one choose to embed only k elements of the messagem. By abuse, the restriction
of the message is again called m. It thus remains x − k (wet) indexes/places
where the information shouldn’t be stored. Such indexes are generated too with
the keyed PRNG. Let v be defined by the following equation

Dv = δ(m,Dx). (3)
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This equation may be solved by Gaussian reduction or other more efficient
algorithms. If there is a solution, one have the list of indexes to modify into the
cover. The nsF5 scheme implements such a optimized algorithm that is to say
the LT codes.

7.3 MMx
Basically, the MMx algorithm [28] embeds message in a selected set of LSB
cover coefficients using Hamming codes as the F5 scheme. However, instead of
reducing as many as possible the number of modified elements, this scheme aims
at reducing the embedding impact. To achieve this it allows to modify more
than one element if this leads to decrease distortion.

Let us start again with an example with a [7, 4] Hamming codes, i.e, let us
embed 3 bits into 7 DCT coefficients, D1, . . . , D7. Without details, let ρ1, . . . , ρ7
be the embedding impact whilst modifying coefficients D1, . . . , D7 (see [28] for a
formal definition of ρ). Modifying element at index j leads to a distortion equal
to ρj . However, instead of switching the value at index j, one should consider
to find all other columns of H, j1, j2 for instances, s.t. the sum of them is equal
to the jth column and to compare ρj with ρj1 + ρj2 . If one of these sums is
less than ρj , the sender has to change these coefficients instead of the j one.
The number of searched indexes (2 for the previous example) gives the name
of the algorithm. For instance in MM3, one check whether the message can be
embedded by modifying each time 3 pixel or less.

7.4 HUGO
The HUGO [32] steganographic scheme is mainly designed to minimize distor-
tion caused by embedding. To achieve this, it is firstly based on an image model
given as SPAM [33] features and next integrates image correction to reduce much
more distortion. What follows discuss on these two steps.

The former first computes the SPAM features. Such calculi synthesize the
probabilities that the difference between consecutive horizontal (resp. verti-
cal, diagonal) pixels belongs in a set of pixel values which are closed to the
current pixel value and whose radius is a parameter of the approach. Thus a
fisher linear discriminant method defines the radius and chooses between di-
rections (horizontal, vertical. . . ) of analyzed pixels that gives the best sep-
arator for detecting embedding changes. With such instantiated coefficients,
HUGO can synthesize the embedding cost as a function D(X,Y ) that eval-
uates distortions between X and Y . Then HUGO computes the matrices of
ρi,j = max(D(X,X(i,j)+)i,j , D−(X,X(i,j)−)i,j) such that X(i,j)+ (resp. X(i,j)+

) is the cover image X where the the (i, j)th pixel has been increased (resp. has
been decreased) of 1.

The order of modifying pixel is critical: HUGO surprisingly modifies pixels
in decreasing order of ρi,j . Starting with Y = X, it increases or decreases its
(i, j)th pixel to get the minimal value of D(Y, Y (i,j)+)i,j and D−(Y, Y (i,j)−)i,j .
The matrix Y is thus updated at each round.
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